B.E AERONAUTICAL ENGINEERING

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VII

COMPUTATIONA	I. FLUID	DYNAMICS
COMPUTATIONA	LILUID	DIMMINICO

C	OMPUTATIONAL FLUI	DINAMICS		-
Course Code	18AE72	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	 SEE Marks 	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Know the basic equations of fluid dynamics, boundary layer and discretization.
- Understand the source and vortex panel method.
- Know about FDM, FVM and FEM.

Module-1

Introduction: CFD Applications. Need for Parallel Computers in CFD algorithms. Models of flows. Substantial derivative, Divergence of velocity. Continuity, Momentum, and Energy Equations-Derivation in various forms. Integral versus Differential form of equations. Comments on governing equations. Physical boundary conditions. Forms of equations especially suitable for CFD work. Shock capturing, and shock fitting.

Module-2

Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification. Hyperbolic, parabolic, and elliptic forms of equations. Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, steady boundary layer flow, and unsteady thermal conduction, steady subsonic inviscid flow.

Module-3

Grid Generation and Adaptive Grids: Need for grid generation and Body-fitted coordinate system. Structured Grids-essential features. Structured Grid generation techniques- algebraic and numerical methods. Unstructured Grids-essential features. Unstructured Grid generation techniques- Delaunay-Voronoi diagram, advancing front method. Surface grid generation, multi-block grid generation, and meshless methods. Grid quality and adaptive grids. Structured grids adaptive methods and unstructured grids adaptive methods.

Module-4

Discretisation & Transformation:

Discretisation: Finite differences methods, and difference equations. Explicit and Implicit approaches. Unsteady Problem -Explicit versus Implicit Scheme. Errors and stability analysis. Time marching and space marching. Reflection boundary condition. Relaxation techniques. Alternating direction implicit method. Successive over relaxation/under relaxation. Second order Lax-Wendroff method, mid-point Leap frog method, apwind scheme, numerical viscosity, and artificial viscosity.

fransformation: Transformation of governing partial differential equations from physical domain to computational domain. Matrices and Jacobians of transformation. Example of transformation. Generic form of the Governing flow equations in Strong Conservative form in the Transformed Space.

Module-5

Finite Volume Technique and Some Applications: Spatial discretisation- cell centered and cell vertex techniques (overlapping control volume, duel control volume). Temporal discretisation- Explicit time stepping, and implicit time stepping. Time step calculation. Upwind scheme and high resolution scheme. Flux vector splitting, approximate factorisation. Artificial dissipation and flux limiters. Unsteady flows and heat conduction problems. Upwind biasing.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Differentiate the FDM, FVM and FEM 1.
- CO2: Perform the flow, structural and thermal analysis. 2.
- CO3: Utilize the discretization methods according to the application. 3.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook/s			
1	Applied Computational Fluid Dynamics	Gupta S.C	Wiley, India	2019
2	Computational Fluid Dynamics	John D. Anderson	McGraw Hill	2013
Refer	ence Books			
1	Computational Fluid Dynamics-An Introduction	John F. Wendt	Springer	3 rd Edition, 2013
2	Numerical Computation of Internal and External Flows	Charles Hirsch	Elsevier	1 st edition,2007
3	Computational Fluid Dynamics for Engineers	Klaus A Hoffmann and SteveT. Chiang		1993
4	Fundamentals of CFD	Tapan K. Sengupta	Universities Press	2004

CBCS SCHEME

Seventh Semester B.E. Degree Examination, Aug./Sept.2020 Computational Fluid Dynamics

Max. Marks: 80 Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Derive momentum equation for small fluid element fixed in space and for small element moving in space, with viscous terms.
 - b. Show that substantial derivative $\rho \frac{Du}{Dt}$ occurring in non-conservative form of momentum equation can be written in the following way that is representative of conservative form $\frac{\partial(\rho u)}{\partial t} + \nabla \cdot (\rho u V)$ (06 Marks)

What are the various boundary conditions?

What are CFD ideas to understand?

(06 Marks) (10 Marks)

Module-2

Through the Cramer rule determine the slopes of characteristic lines for potential 2-D flow $(1 - M_{\infty}^2) \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$, where u and v are perturbation velocities in the flow. M_{∞}

is free stream Mach number. Explain how steady boundary layer flow can be governed by Parabolic equations. (04 Marks)

Explain the different mathematical behavior of CFD equations that reflects different 4 physical behavior of flow field. Give an example of each case. (16 Marks)

Module-3

Describe Hermite Polynomial Interpolation.

Develop a cubic Hermite Polynomial for following function

 $f(x) = x^4 + x^3 + x^2 + x + 1$

(08 Marks)

(08 Marks)

a. Explain elliptic grid generation technique.

b. Describe the following for structured adaptive grid generation:

(08 Marks)

- (i) Control function approach
- (ii) Variational methods

(08 Marks)

Module-4

- Describe the following:
 - (i) Upwind differencing
 - (ii) Midpoint leap frog differencing techniques
 - (iii) Reflection Boundary condition.

(09 Marks)

1 of 2

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice

b. Use an explicit numerical method to solve the heat conduction equation

$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2}$$

Boundary conditions: T(0, t) = T(1, t) = 0 $(t \ge 0)$; $T(x, 0) = Sin(\pi x)$ $(0 \le x \le 1)$

Both ends held at zero temperature given initial temperature distribution.

Use the following parameters.

$$\Delta t = 0.1$$
 $\Delta x = 0.25$

$$a = 0.1$$
; Carry out iterations till 0.3 sec.

(07 Marks)

OR

8 a. Consider the following transformation for accomplishing grid stretching:

$$\xi = x, \quad n = \ln(y+1)$$

What happens to governing flow equations in both the physical and computational plane with this transformation? Show this with an example of 2-D continuity equation for compressible flow through matrices technique for transformation of grids. (10 Marks)

b. Explain the above with Inverse Transformation through use of Jacobean.

(06 Marks)

Module-5

9 Write short notes on following:

a. Numerical viscosity
b. Flux vector splitting (06 Marks)

c. Approximate Factorisation (06 Marks)

OR

10 Explain the following:

a. Artificial viscosity (04 Marks)

b. Finite volume solution to diffusion problem below.

$$\frac{d}{dx}\left(k\frac{\partial T}{\partial x}\right) = 0$$
 (05 Marks)

c. Finite volume solution to convection and diffusion problem below.

$$\frac{d}{dx} \left(k \frac{\partial T}{\partial x} \right) - \frac{d(\rho u T)}{dx} = 0$$
 (07 Marks)

* * * *

15AE72

Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Computational Fluid Dynamics**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

With the help of neat sketches, explain the different models of the flow. 1

Derive the momentum equation considering an infinitesimally small fluid element moving with the flow, for an unsteady. Three dimensional, compressible and various flow with usual (10 Marks) notations.

OR

Explain the importance of CFD in modern study and the different architectures used in CFD. 2

Derive an expression for divergence of velocity with usual notation and explain its physical (08 Marks) meaning.

Module-2

Explain the different mathematical behavior of CFD equation that reflects different physical 3 behavior of flow. Given an example for each case. (08 Marks)

Describe the external features of hyperbolic equation and explain its impact on physical behavior of CFD problems.

Consider the irrigational two dimensional, inviscid steady flow of a compressible gas. If the flow field is only slight perturbed from the freestream conditions such as the flow over as 4 thin body as small angles of attack and if the freestream mach number is either subsonic or supersonic (but not transonic or hypersonic) the governing conformity, momentum and energy equation can be reduced to the systems. Find the roots of equations involved in such (08 Marks) kind of flow problem using Cramer's rule:

Explain the following with relevant sketches:

i) Parabolised viscous flow

ii) Unsteady in viscous flow.

(08 Marks)

Module-3

With the help of relevant sketch explain the elliptic grid generation. 5

(08 Marks)

Define grid quality. List the measures of quality and explain in detail. a. 5

(08 Marks)

OR

List the advantages and disadvantages of structured and unstructured grids. Explain in brief. 6

ii) Meshless grids. Write short notes on: i) Adaptive grids 1-of 2

(08 Marks)

Scanned by CamScanner

Module-4

- 7 a. Demonstrate the explicit and implicit approach of solving CFD problems. List their advantages and disadvantages. (08 Marks)
 - b. For an inviscid, incompressible, two-dimensional irrotational flow in a Cartesian space explain the steps involving in numerical solving by relaxation technique with suitable expressions.

 (08 Marks)

OR

- 8 a. Explain numerical and artificial viscosity with suitable expressions. (08 Marks)
 - b. With suitable expressions, demonstrate the transformation of governing partial differential equations from physical domain to computational domain. (08 Marks)

Module-5

- 9 a. Write short notes on
 - i) Cell-centered technique
 - ii) Cell-vertex technique.

b. With suitable expression explain explicit time stepping scheme.

(10 Marks)

(06 Marks)

OR

- Describe the following finite volume techniques with their applications:
 - i) Flux vector splitting
 - ii) Spatial discritization.

(16 Marks)

|| Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust ®

SJC INSTITUTE OF TECHNOLOGY

Chickballapur - 562 101

Department of Aeronautical Engineering

QUESTION BANK

SUBJECT TITLE	COMPUTATIONAL FLUID DYNAMICS			
SUBJECT TYPE	CORE /-ELECTIVE			
SUBJECT CODE	17AE82			
ACADEMIC YEAR	2021-22 (ODD SEMESTER)	ватсн	2018-2022	
SCHEME	CBCS scheme (Effective from the a	cademic year 2015 -2016	5)	
SEMESTER	VII			
FACULTY NAME and DESIGNATION	Prof. Deepa M S			

Module -1			
Q. No.	Questions	Bloom's LL	COs
1	Explain the different computer architectures used in CFD. Explain the importance of CFD in modern study and the solution of problems in Fluid Mechanics.	L2	COI
2	With the help of a neat sketch explain the method of solving flow field over a supersonic blunt-nosed body	L2	СО
3	With the help of neat sketches explain the different models of the flow.	L2	СО
4	Derive an expression for Substantial Derivative with usual notations	L3	СО
5	Derive an expression for Time Rate of change following a moving fluid element	L3	со
6	Explain the models of the flows to obtain Conservation and	L2	СО
7	Derive an expression for Divergence of Velocity with usual notations	L3	СО
8	With the help of a neat sketch explain the models of Finite Control Volume.	L2	СО
9	Derive the Momentum Equation considering an infinitesimally small fluid element moving with the flow, for unsteady, three-dimensional, compressible and viscous flow with usual notations	L3	со
10	Derive the Energy Equation considering an infinitesimally small fluid element moving with the flow, with usual notations	L3	СО

Q. No.	Questions	Bloom's LL	COs
1	Explain the classification of Quasi-Linear Partial Differential Equations	L2	CO
2	Apply Eigen Value method to a Quasi-linear partial differential equation for the mathematical classification as elliptic, parabolic and hyperbolic.	L3	CO
3	Apply Cramer Rule to a Quasi-linear partial differential equation for the mathematical classification as elliptic, parabolic and hyperbolic.	L3	CO
4	reflects different physical behavior of flow; give an example in each case.	L2	CO
5	Assuming a system of quasi-linear equations, with the help of a characteristic curve at a point $p(x,y)$, classify the different types of PDE's stating example for each type.	L3	CO
6	Determine the type of PDE for the following equation: Also if a variable Φ is introduced such that $u = and v = D$ etermine the nature of PDE.	L4	CO2
7	Describe the essential features of hyperbolic equation impact on physical behavior of CFD problems.	L3	CO2
8	Explain the following with relevant sketches i) Steady Inviscid Supersonic Flow ii) Unsteady Inviscid Flow	L3	CO2
9	Describe the essential features of parabolic equation impact on physical behavior of CFD problems.	L3	CO2
10	Explain the following with relevant sketches i) Steady Boundary Layer Flows ii) Parabolized Viscous Flow iii) Unsteady Thermal Conduction	L3	CO2
11	For the one dimensional unsteady thermal conduction through a semi-infinite fluid, write the governing equation, boundary conditions and plot the typical solution characteristics.	L3	CO2
12	Consider the irrotational, 2-D steady flow of a compressible gas. The flow field is slightly perturbed from free stream like flow over a thin profile. Find the roots of equations involved in such kind of flow problem, using Eigen method.	L4	CO2

	Module -3	Bloom's	
Q. No.	Questions	LL LL	COs
1.	Define grid generation and describe the importance of boundary fitted co-ordinate system in CFD.	L2	CO3
2.	With the help of relevant sketches explain boundary fitted co-ordinate system	L2	CO3
3.	Explain the boundary fitted coordinate system for the divergent duct.	L2	CO3
4.	List the features of Structured grids? Explain the different methods of structured grid generation with suitable sketches.	L2	CO3
5.	Explain the following with relevant sketches i) Algebraic Methods ii) Differential Equation Technique or Numerical Method	L2	CO3
6.	List the features of Unstructured grids? Explain the different methods of unstructured grid generation with suitable sketches.	L2	CO3
7.	Explain the following with relevant sketches i) Point Insertion Schemes or Delaunay-Voronoi Diagram ii) Advancing Front Methods	L2	CO3
8.	Discuss the need of grid generation of grid generation in CFD and summarize the following methods of grid generation. i) Surface Grid Generation ii) Multi Block Grid Generation iii) Meshless Methods	L2	CO3
9.	i) Striving for quality ii) Grid design guidelines and total cell count	L2	CO
10.		L2	COS
11.	Differentiate Structured and Unstructured Adaptive grids with suitable sketches.	L2	CO
12.	List the essential properties of grids	L2	CO:
13.	Explain the importance of various coordinate systems in grid generation	L2	CO:
14.	Consider a Trapezoid in (x,y) plane as shown in fig. Generate a mesh corresponding to (ξ,η) coordinates at 0.2 units apart. Take four points of Trapezoid as A(0,0), B(20,0), C(20,10) and D(0,5)	L3,L4	CO

	Module -4		
Q. No.	Questions	Bloom's LL	COs
1.	Summarize the essence of discretization in CFD	L2	CO4
2.	Derive the Taylor Series approach for the construction of finite Difference Equation	L3	CO4
3.	With the help of neat grids explain the graphical concept of finite difference modules and list the pros and cons of higher order accuracy	L3	CO4
4.	Illustrate a portion of a boundary and explain what happens at the boundary. Also describe the reflection boundary conditions	L3	CO4
5.	Derive a difference equation for an unsteady one dimensional heat conduction equation with thermal diffusivity with usual notations	L3	CO4
6.	Demonstrate the Explicit and Implicit approaches of solving CFD. List their advantages and disadvantages	L3	CO4
7.	Explain the different types of errors involved in solving finite difference equations and summarize the stability analysis Consider the viscous flow of air over a flat plate. At a given station in the	L2	CO4
t e	flow direction, the variation of the flow velocity u in the direction perpendicular to the plate (the y direction) is given by the expression u = $1582(1-e^{-y/L})$ where L is the characteristics length -0.0988 m. The units of u is m/s. the viscosity co-efficient $\mu = 1.7894$ x 10^{-5} W/m-s. the above equation is used to provide the values of u at discrete grid points equally spaced in the y-direction $Y(m) \qquad u(m/s)$ $0 \qquad 0$ $0.03 \qquad 45.88$ $0.006 \qquad 87.407$ $0.009 \qquad 124.977$ The values of u listed above are discrete values at the distance grid points located at $y = 0$, 0.003 , 0.006 , 0.009 in the same nature as would be obtained from a numerical finite-difference solution of the flow field. Using these discrete values calculate the shear stress at the wall τ_w in three different ways namely i) First order one-sided difference ii) Second order one-sided difference iii) Third order one-sided difference iii) Third order one-sided difference iii) Third order one-sided difference iiii) Third order one-sided difference iiiii) Third order one-sided difference iiiiiii) Third order one-sided difference iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	L4	CO
c b	onsidering a $3x2$ unit square mesh as shown in Fig. The various coundary values are u1, u2, u3, u6, u5, u9, u12 = 0 nad u4 = 8, u7 = 32, u1 = 18, f5 = 8, f8 = 20. Obtain the values of u5 and u8.	L4	СО

	Module -5		
Q. No.	Questions	Bloom's LL	CO.
1.	With the help of neat grids and equations explain i) Relaxation Technique ii) Alternating Direct Implicit (ADI) Method iii) Successive Over relaxation and Under Relaxation iv) Second Order Lax-Wendorff Method v) Mid-Point Leap Frog Method vi) Upwind Scheme	L3	CO5
2.	With the help of relevant sketches illustrate Numerical Dissipation, Numerical Diffusion and Numerical and Artificial Viscosity	L2	СО
3.	Explain Lax-Wendroff technique for Time marching (VTU, Dec 2009-2010 – 12 Marks)	L2	СО
4.	What is Upwind Scheme? Explain in brief (VTU, Dec 2009-2010 – 8 Marks)	L2	СО
5.	What is alternating Director Implicit (ADI) technique? Explain(VTU, Dec 2010 – 10 Marks)	L2	CO.
6.	What is successive over-relaxation and under-relaxation (VTU, June/July 2011 – 8 Marks)	L2	СО
7.	For a 2D, unsteady heat conduction in a Cartesian space explain the steps involved in numerical solving by DI technique with suitable expressions	L3	CO:
8.	Derive the expression for amplification factor and stability requirement for a numerical solution using Lax-Wendroff technique using wave equation with one-step scheme.	L3	CO:
9.	Write short notes on; i) Time and space marching in CFD ii) Various general schemes of solution of PDEs numerically iii) Upwind schemes in CFD (VTU, Dec 2011 – 20 Marks)	L2	СО

Note:

- 1. Questions shall be framed by consolidating comprehensively from the following sources
 - Exercise problems of text books/ references
 - Previous year question VTU exam Question paper. (Mark the year/exam beside the question)
 - Questions by Experts during Interview/Academic Audit
 - Internet sources/ other Universities examination question papers.
 - Own / experience.
 - Gate questions mentioning the year.
- 2. Questions shall follow all the Bloom's learning levels with appropriate action verbs
- 3. There shall be a total of 50 questions considering 10 questions from each module, of which, 3 questions each at L1 and L2, 2 questions at L3, 1 question each at L4 and L5/L6.
- 4. Ensure the coverage of all Cos.

|| Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust ®

SJC INSTITUTE OF TECHNOLOGY

Chickballapur – 562 101

Department of Aeronautical Engineering

ASSIGNMENT

SUBJECT TITLE	COMPUTATIONAL FLUID DYNAMICS			
SUBJECT TYPE	CORE /-ELECTIVE	CORE /-ELECTIVE		
SUBJECT CODE	17AE82			
ACADEMIC YEAR	2021-22 (ODD SEMESTER)	ватсн	2018-2022	
SCHEME	CBCS scheme (Effective from the a	cademic year 2016 -2017	7)	
SEMESTER	VII			
FACULTY NAME and DESIGNATION	Prof. Deepa M S			

Module -1 TO Module-5			
Q. No.	Questions MINI PROJECT TOPICS	Bloom's LL	COs
1.	Modelling of 2-D Incompressible and Inviscid flow over Cambered Airfoil (NACA 2415) and plotting of pressure distribution and velocity vectors for Subsonic Mach number using ANSYS Workbench	L5 & L6	CO1-0
2.	Modelling of 2-D Incompressible and Inviscid flow over Cambered Airfoil (NACA 2415) and plotting of pressure distribution and velocity vectors for Supersonic Mach number using ANSYS Workbench	L5 & L6	CO1-0
3.	Modelling of 2-D Incompressible and Inviscid flow over Flat Plate of thickness 2 mm and 10 cm long and plotting of pressure distribution and velocity vectors for Subsonic Mach number using ANSYS Workbench	L5 & L6	CO1-
4.	Modelling of 2-D Incompressible and Inviscid flow over Flat Plate of thickness 2 mm and 10 cm long and plotting of pressure distribution and velocity vectors for Supersonic Mach number	L5 & L6	CO1-
5.	Modelling of 2-D Incompressible and Inviscid flow over Symmetric Airfoil (NACA 0015) and plotting of pressure distribution and velocity vectors for Subsonic Mach number	L5 & L6	CO1- O5
6.	Modelling of 2-D Incompressible and Inviscid flow over a cylinder of 10 cm diameter and plotting of pressure distribution and velocity vectors for Supersonic Mach number	L5 & L6	CO1- O5
7.	Modelling of 2-D Incompressible and Inviscid flow over a wedge of sides 10.5 and height 8.5 cm and plotting of pressure distribution and velocity vectors for Subsonic Mach number	L5 & L6	CO1- O5
8.	Modelling of 2-D Incompressible and Inviscid flow over Symmetric Airfoil (NACA 0015) and plotting of pressure distribution and velocity vectors for Subsonic Mach number	L5 & L6	CO1- O5

1011			
0	Modelling of 2-D Incompressible and Inviscid flow over a wedge of sides 10.5 and height 8.5 cm and plotting of pressure distribution and velocity vectors for	L5 & L6	COI.
	Subsonia Mach number	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	CO5
10.	Modelling of 2-D Incompressible and Inviscid flow over a cylinder of 10 cm diameter and plotting of pressure distribution and velocity vectors for Subsonic	L5 & L6	CO5
	Mach number		

	Module -2		
Q. No.	Questions	Blooms LL	COs
1	Determine the type of PDE for the following equation: Also if a variable Φ is introduced such that $u = 0$ and $v = 0$ Determine the nature of PDE.	L4	CO2
	Consider the irrotational, 2-D steady flow of a compressible gas. The flow field is slightly perturbed from free stream like flow over a thin profile. Find the roots of equations involved in such kind of flow problem, using Eigen method.	L4	CO2

Module -3					
Q. No.	Questions	Bloom's LL	COs		
4	Consider a Trapezoid in (x,y) plane as shown in fig. Generate a mesh corresponding to (ξ,η) coordinates at 0.2 units apart. Take four points of Trapezoid as A(0,0), B(20,0), C(20,10) and D(0,5)				
		L3,L4	CO3		

	Module -4						
Q. No.	Questions	Bloom's	COs				
	Consider the viscous flow of air over a flat plate. At a given station in the flow direction, the variation of the flow velocity u in the direction perpendicular to the plate (the y direction) is given by the expression $u = 1582(1-e^{-y/L})$ where L is the characteristics length -0.0988 m. The units of u is m/s, the viscosity co-efficient $\mu = 1.7894 \times 10^{-5}$ W/m-s, the above equation is used to provide the values of u at discrete grid points	L4	CO4				

equally spaced in the y-directi	on		
Y(m)	u(m/s)		
0	0		
0.03	45.88		
0.006	87.407		
0.009	124.977		
located at y = 0, 0.003, 0,000 obtained from a numerical fit Using these discrete values three different ways namely i) First order one-side ii) Second order one-side iii) Third order one-side	ided difference ed difference ulated finite-difference results with the exact		
If $= f(x,y)$, solve considering a 3x2 unit so boundary values are u1, u2.	the flow domain using FVM via FDM by quare mesh as shown in Fig. The various, u3, u6, u5, u9, u12 = 0 nad u4 = 8, u7 = 32, btain the values of u5 and u8.	L4	CO4

|| Jai Sri Gurudev || | Sri Adichunchanagiri Shikshana Trust **

SJC INSTITUTE OF TECHNOLOGY

Estd: 1986

Chickballapur - 562 101

Department of Aeronautical Engineering

LESSON PLAN

SUBJ	ECT TITLE	COMPUTATIONAL FLUID DYNAMICS					
SUBJ	ECTTYPE	CORE / ELECTIVE					
SUBJ	ECT CODE	18AE72					
ACAL	DEMIC YEAR	2021-22 (ODD SEMESTE	R)	BATCH	2018-2022		
SCHEME		CBCS scheme (Effective fi	rom the a	cademic year 2016 -2017)		
SEMI	ESTER & SECTION	VII					
IA M	ARKS	40		EXAM MARKS	100		
NUMBER OF LECTURE HOURS/WEEK		3		TOTAL NUMBER OF LECTURE HOURS	50		
FACU	ULTY NAME			NO. OF TIMES HANDLED	Second time		
COUL	RSE LEARNING OBJ	ECTIVES: This course will en	nable stud	ents to			
1.	Know the basic equa	tions of fluid dynamics, bounc	lary layer	and discretization			
2.	Understand the source	ce and vortex panel method					
3.	Know about FDM,F						
Cours	the grant of the second or the control of the second of	nd of this course, students are					
COL	Describe the basics of form. (L3)	of CFD, its governing equation	s of variou	is flow models in differen	tial and integral		
CO2	Compare the physics	of the flow with the mathema	tical behav	vior of partial differential	equations. (L3)		
CO3		e the suitable grid generation a					
CO4	Hlustrate the fundam	entals of discretization in FVN	1, FDM an	d FEM techniques. (L3)	The state of the s		
CO5	Interpret different se	hemes and their stability in sim	ple CFD	applications, (L4)			

CO-PO MATRIX

		COURSE OUTCOM ES	POI	PO2	PO3	PO4	POS	POs	PO7	PO8	P()9	(*()10)	POH	PO12	PSO1	PSO2
le:		CO1	3	3	2	2	2	-			2	1		3	3	2
	1	CO2	3				2				2	1		3	3	2
		CO3	3	2	1	2	1				1	1		2	3	3
	1	CO4	3	3	3	2	1	-			1	1		2	3	3
		CO5	3	3	3	2	1			1350	61			2	3	3

Justification of CO-PO mapping

- Assignments from NPTEL in the form of quiz and Problems will be given as Assignment 1 and 2 respectively.
- A Mini Project covering all the COs and PSOs will be given as Assignment 3 to a group of 6-7 students

	MODULE - I	-	Mod	le of		Datase	COs
				very		Date of Delivery	Covered
Lecture	Topic	1		ick √)		Denvery	0010100
#	Topic	ī	2		4		
	for abovier of fluid and)	4/10/2011	COL
1.	Review of all the basics of mechanics of fluid and	~			1	(11-12-	COL
	Aerodynamics Introduction: CFD Applications	V		-	٦		
2.	Need for Parallel Computers in CFD algorithms. Models.					Stolman	COL
٥.	of flows.	V				11/10/1021	COL
4.	Substantial derivative, Divergence of velocity	V	-			1 101. 4.	COL
5.	Continuity Equation-Derivation in various forms	V		+		y 18/20/202 21/20/2022 23/20/2022	COL
6.	Continuity Equation-Derivation in various forms	1	-	1		21/10/2021	COL
7.	Momentum Equation- Derivation in various forms					23/10/204	COL
8.	Energy Equations	V					COL
9.	Integral versus Differential form of equations. Comments on governing equations	~				25/10/204	
10.	Forms of equations especially suitable for CFD work.	/				27/10/24	COL
10.	Shock capturing, and shock fitting					01/10/29	
extbook:	Cfo by Anderson						Takon
	Faculty: Kulare 15 11 wn			OUDS		Allotted	Taken
Signatures	HoD:		#H1	OURS	,	10	10
Remarks	Modul & Conflete as	-	her	Sch	esu	le .	
Remarks	Module & Completed an			Sch		La Date of	COs
	MODULE - 2		M		ľ		Covere
Lecture	Module & Completed an MODULE - 2 Topic		Me De	ode of divery Tick	ľ	Date of	
	MODULE – 2 Topic		Me De	ode of	ľ	Date of Deliver	Covere
Lecture #	MODULE – 2 Topic Mathematical Behaviour of Partial Differential		Me De	ode of divery Tick	((()	Date of Deliver y	Covere
Lecture	MODULE - 2		Me De	ode of divery Tick	((()	Date of Deliver y	Covere
Lecture #	MODULE – 2 Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential		Me De	ode of divery Tick	((()	Date of Deliver y	Covere
Lecture # 11.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification		Me De	ode of divery Tick	((()	Date of Deliver y 28/10/201 8/11/204	Covere d CO2 CO2
Lecture # 11.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations		Me De	ode of divery Tick	((()	Date of Deliver y 28/10/10 8/11/204 9/11/204	Covere d CO2 CO2 CO2
Lecture # 11. 12. 13. 14.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations		Me De	ode of divery Tick	((()	Date of Deliver y 28/10/10 8/11/204 9/11/204 10/11/204	Covere d CO2 CO2 CO2 CO2 CO2
Lecture # 11. 12. 13. 14. 15.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Elliptic forms of equations		Me De	ode of divery Tick	((()	Date of Deliver y 28/10/100 8/11/204 9/11/204 10/11/204	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
Lecture # 11. 12. 13. 14.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational		Me De	ode of divery Tick	((()	Date of Deliver y 28/10/10 8/11/204 9/11/204 10/11/204	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
Lecture # 11. 12. 13. 14. 15. 16.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics.		Me De	ode of divery Tick	((()	Date of Deliver y 28/10/1004 9/11/204 10/11/204 15/11/204	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
Lecture # 11. 12. 13. 14. 15.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Elliptic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic		Me De	ode of divery Tick	((()	Date of Deliver 28/10/100 8/11/204 9/11/204 10/11/204 15/11/204	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
11. 12. 13. 14. 15. 16.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, Steady boundary layer flow		Me De	ode of divery Tick	((()	Date of Deliver 28/10/100 8/11/204 9/11/204 10/11/204 15/11/204	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
Lecture # 11. 12. 13. 14. 15. 16.	Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, Steady subsonic inviscid flow Steady subsonic inviscid flow	1	Me De	ode of divery Tick	((()	Date of Deliver y 28/10/100 8/11/204 9/11/200 15/11/200 15/11/200 15/11/200 15/11/200 17' 17' 17' 17' 17' 17' 17' 1	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
Lecture # 11. 12. 13. 14. 15. 16. 17. 18.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, Steady boundary layer flow Steady subsonic inviscid flow	1	Me De	ode of divery Tick	((()	Date of Deliver y 28/10/1000 8/11/2000 10/11/2000 15/11/2000	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
Lecture # 11. 12. 13. 14. 15. 16. 17. 18. 19.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, Steady boundary layer flow Steady subsonic inviscid flow	1	Me De	ode of divery Tick	((()	Date of Deliver y 28/10/1000 8/11/2000 10/11/2000 15/11/2000	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
Lecture # 11. 12. 13. 14. 15. 16. 17. 18. 19.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, Steady boundary layer flow Steady subsonic inviscid flow	1	Me De	ode of divery Tick	((()	Date of Deliver y 28/10/100 8/11/204 9/11/200 15/1	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, Steady boundary layer flow Steady subsonic inviscid flow	1	Min De (Pisselle 2	ode of elivery Tick 3	(V) 4	Date of Deliver y 28/10/1000 8/11/2000 10/11/2000 15/11/2000	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow, Steady boundary layer flow Steady subsonic inviscid flow	1	Min De (Pisselle 2	ode of divery Tick	(V) 4	Date of Deliver y 28/10/1000 8/11/2000 10/11/2000 15/11/2000 15/11/2000 15/11/2000 16/11/2000 16/11/2000 16/11/2000 16/11/2000 Allotte	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO
11. 12. 13. 14. 15. 16. 17. 18. 19. 20. Textbook:	Module – 2 Topic Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations. Cramer Rule and Eigen value methods for classification Hyperbolic forms of equations Parabolic forms of equations Elliptic forms of equations Impact of classification on physical and computational fluid dynamics. Case studies: steady inviscid supersonic flow, unsteady inviscid flow. Steady boundary layer flow Steady subsonic inviscid flow Unsteady thermal conduction, steady subsonic inviscid flow Cfo Management	1	Min De (Pisselle 2	ode of elivery Tick 3	(V) 4	Date of Deliver y 28/10/100 8/11/204 9/11/200 15/1	Covere d CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO

Lecture	MODULE – 3 Topic	Mode of Delivery (PlsTick √)	Date of Deliver y	COs Covere d
#		1 2 3	4	
21.	Grid Generation and Adaptive Grids: Need for grid generation and Body-fitted coordinate system.	~	23/11/201	CO3
22	Structured Grids-essential features	~	delulus	CO3
22,	Structured Grid generation techniques- algebraic and	~	29/11/2021	CO3
23.	numerical methods.		30/11/104	
24.	Unstructured Grids-essential features	V	1/12/24	CO3
25.	Unstructured Grid generation techniques- Delaunay-		2/12/2020	CO3
25 A 1 1 1 1	Voronoi diagram,	~	3/12/2021	CO3
26.	Unstructured Grids- advancing front method.	V	8/12/24	CO3
27.	Surface grid generation, Multi-block grid generation	~	9/12/24	CO3
28.	Meshless methods. Grid quality and adaptive grids	V	10/2/11/10/	
29.	Structured grids adaptive methods and	~	11/2/12/	L CO3
30.	Unstructured grids adaptive methods		12/12/13/12	4/12
extbook:	Cfp by Anderson		Special State of the State of t	
	Faculty: Reparty 121 204	WALLE	Allotted	Taker
gnatures	HoD:	#HOURS	10	16
emarks	Modele III Completed			
	Modele III Confileted MODULE-4			
	The state of the s	Mode of	Date of	COs
Lecture		Delivery	Deliver	Cover
#	Topic	(PlsTick v		d
		1 2 3	4	
31.	Discretization & Transformation Discretization: Finite differences methods, and differences		१६/५/०३	CO4
32.	equations Explicit and Implicit approaches	. /	20/12/102	CO4
33.	Unsteady Problems- Explicit versus Implicit Scheme.	~	24/12/2011	
34.	Errors and stability analysis.	V	21/0/2011	
35.	Time marching and space marching	7	3/1/2012	CO4
36.	Reflection boundary condition. Relaxation techniques.		4/1/1022	CO4
37.	Alternating direction implicit method		10/1/202	CO4
38.	Successive over relaxation/under Relaxation.		11/1/02	CO4
39.	Second order Lax-Wendorff method, mid-point Leap fromethod,	g	12/1/100	CO4
40.	upwind scheme, numerical viscosity, and artificial viscosity	1	12/1/2000	CO4
41.	Transformation: Transformation of governing partial	1205 1 251		00.
	differential equations from physical domain to	/	13/hour	CO4
Es Perio	computational domain.	10000		
42.	Matrices and Jacobians of transformation, Example of transformation.	1	13/, hon	CO4
	Generic form of the Governing flow equations in Strong Conservative form in the		13/, non	CO4
43.	Transformed Space.	The second secon		
	Transformed Space.			-
Textbook:	Faculty: Quello 100	#HOURS	Allotted	Take
	Faculty: Quello 100	#HOURS	Allotted	Take

	MODULE - 5	Mode of	Date of	COs	
Lecture	Topic	Delivery (PisTick √)	Delivery	Covered	
#		1 2 3 4			
44.	Module -5 Finite Volume Technique and Some Applications: Spatial discretization		4/1/202	CO5	
45.	cell centered and cell vertex techniques	V	11/2002	CO5	
46.	Overlapping control volume, duel control volume)	V	17/1/20n	CO5	
47.	Temporal discretization- Explicit time stepping, and implicit time stepping.	V	U/ hon	CO5	
48.	Time step calculation	V	18/1/2021	CO5	
49.	Upwind scheme and high resolution scheme.	~	18/1/20n	CO5	
50,	Flux vector splitting, Approximate factorization	/	18/1/10m		
51.	Artificial dissipation and flux limiters	~	181,/100	CO5	
52.	Unsteady flows and heat conduction problems, Upwind biasing	/	11/1/wn	CO5	
Textbook:					
et .	Faculty:		Allotted	Taken	
Signatures	HoD:	#HOURS			
Remarks					

Text Books:

1.Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics", 2nd edition, Springer, Berlin, 2002,ISBN-13: 978-3540543046

2.John D. Anderson, "Computational Fluid Dynamics" McGraw Hill, 2013, ISBN-13: 978-0070016859.

Reference Books:

- 1. John F. Wendt, "Computational Fluid Dynamics An Introduction", 3rd edition, Springer, 2013
- 2. Charles Hirsch, "Numerical Computation of Internal and External Flows" 1st edition, Elsevier, 2007, ISBN-13: 978-9381269428.
- 3. Klaus A Hoffmann and Steve T. Chiang. "Computational Fluid Dynamics for Engineers", Vols. I & II Engineering Education System67208 - 1078 USA,1993.

(Note: Mode of Delivery

I Black Board

2 PPT

3:Video 4 Demo/Hands-on)

INTERNAL/ASSIGNMENT/QUIZ SCHEDULE

TEST and QUIZ		COs and Po	rtions Covered	ASSIGNMENT		
Test# and Quiz#	DATE	CO	Modules	Assignment#		
T1 & Q1	23/11/100	CO, 1 CO2	2,1	A1	22/11/202	
T2 & Q2	28/12/204	Cos, 604	A.T. I	Λ2	22/12/2021	
T3 & Q3	19/1/2012	CO4, COS	7, 1	A3	mont project	

SUMMARY

Signatures With Date	Faculty:		Total	Allotted	Taken
	HoD:	a cont	#HOURS		
Remarks			17		

ENCLOSURES

- 1. Syllabus
- 2. CO Attainment
- 3. Gap Analysis
- 4. Special lectures/talks arranged if any

Feedback by PA	C	

Faculty

Course coordinator

PAC

HOD

S.J.C. INSTITUTE OF TECHNOLOGY DEPARTMENT OF AERONAUTICAL ENGG.

COMPUTATIONAL FLUID DYNAMICS - 18AE72 QUESTION BANK - I

Sl. No.	Questions	CO	Levels
1.	MODULE I		
2.	Explain the different computer architectures used in CFD	CO1	L2
	of problems in Fluid Mechanics	CO1	L2
3.	With the help of a neat sketch explain the method of solving flow field over a supersonic blunt-nosed body	CO1	L2
4.	Describe the CFD ideas to understand and its application	CO1	L2
5.	flow.	CO1	L2
6.	Derive an expression for Substantial Derivative with usual notations	CO1	L3
7.	Derive an expression for Time Rate of change following a moving fluid element	CO1	L3
8.	Explain the models of the flows to obtain Conservation and Non- conservation form of Equations	CO1	L2
9.	Derive an expression for Divergence of Velocity with usual notations	CO1	L3
10.	With the help of a neat sketch explain the models of Finite Control Volume.	CO1	L2
11.	With the help of a neat sketch explain the models of Infinitesimal Fluid Element	CO1	L2
12.	Explain the physical significance of Divergence of Velocity and derive an expression for the same with usual notations.	CO1	L3
13.	Derive Continuity Equation considering a model of the finite control volume fixed in space with usual notations	CO1	L3
14.	Explain the method Shock fitting in CFD	CO1	L2
15.	Derive Continuity Equation considering a model of the finite control volume moving with the fluid with usual notations	CO1	L3
16.	Explain the method of Shock Capturing in CFD	CO1	L2
17.	Derive Continuity Equation considering a model of infinitesimally small element fixed in space with usual notations	CO1	L3
18.	Explain the differences between Integral and Differential forms of equations	CO1	L2
19.	Derive Continuity Equation considering a model of infinitesimally small element moving with the flow with usual notations	CO1	L3
20.	Explain the physical boundary conditions used in CFD	CO1	L2

21.	Derive the Momentum Equation considering an infinitesimally small fluid element moving with the flow, for unsteady, three-	601	
22	differential, compressible and viscous flow with usual potetions	COI	L3
22.	equations and explain.	CO1	L3
23.	Derive the Energy Equation considering an infinitesimally small fluid element moving with the flow, with usual notations	CO1	L3
24.	Explain the different forms of the governing equations particularly suited for CFD work.	COI	L2
	MODULE II		
25.	Explain the classification of Quasi-Linear Partial Differential Equations	CO2	L2
26.	Apply Eigen Value method to a Quasi-linear partial differential equation for the mathematical classification as elliptic, parabolic and hyperbolic.	CO2	L3
27.	Apply Cramer Rule to a Quasi-linear partial differential equation for the mathematical classification as elliptic, parabolic and hyperbolic.	CO2	L3
28.	Explain the different mathematical behavior of CFD equations that reflects different physical behavior of flow; give an example in each case.	CO2	L2
29.	Assuming a system of quasi-linear equations, with the help of a characteristic curve at a point $p(x,y)$, classify the different types of PDE's stating example for each type.	CO2	L3
30.	Determine the type of PDE for the following equation: Ou Also if a variable Φ is introduced such that $u = 0$ and $v = 0$ Determine the nature of PDE.	CO2	L4
31.	Describe the essential features of hyperbolic equation impact on physical behavior of CFD problems.	CO2	L3
32.	Explain the following with relevant sketches i) Steady Inviscid Supersonic Flow ii) Unsteady Inviscid Flow	CO2	L2
33.	Describe the essential features of parabolic equation impact on physical behavior of CFD problems.	CO2	L3
34.	Explain the following with relevant sketches i) Steady Boundary Layer Flows ii) Parabolized Viscous Flow iii) Unsteady Thermal Conduction	CO2	L3
35.	For the one dimensional unsteady thermal conduction through a semi-infinite fluid, write the governing equation, boundary conditions and plot the typical solution characteristics.	CO2	L3
36.	Consider the irrotational, 2-D steady flow of a compressible gas. The flow field is slightly perturbed from free stream like flow over a thin profile. Find the roots of equations involved in such kind of flow problem, using Eigen method.	CO2	L4

2/11/201

PROFESSOR & HEAD
Department of Aeronautical Engineering
S.J.C. Institute of Technology
CHICKBALLAPUR-562101

Name of the staff: Mrs. Deepa M S

Date: 23.11.2021

Signature:

Reviewer's Signature:

S J C Institute of Technology 231

Department of Aeronautical Engineering

Continuous Internal Evaluation 1

Semester: VII

Subject Name & Code: COMPUTATIONAL FLUID DYNAMICS - 18AE72

Duration: 90 minutes Date: 25.11.2021

Max Marks: 50+10(MCQs) Time: 2:00 to 3:30 PM

	11me: 2:00	to 3:30 Pr	M	
Question Number		Marks	со	Bloom's Level
	PART A			
1	a) Explain the different computer architectures used in CFD	5	CO1	L2
	b) Describe the method of Shock Capturing in CFD			
	OB	5	COI	L2
2	a) With the help of neat sketches explain the different models of the flow.	5	CO1	L2
	b) Describe the physical boundary conditions used in CFD	5	COI	L2
3	Develop Continuity Equation considering a model of the finite control volume fixed in space with usual notations	10	CO1	L3
	OR			
	Considering an infinitesimally small fluid element manifest in the considering and infinitesimally small fluid element manifest in the considering and infinitesimally small fluid element manifest in the considering and infinitesimally small fluid element manifest in the considering and infinitesimally small fluid element manifest in the considering and infinitesimally small fluid element manifest in the considering and infinitesimally small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element manifest in the considering and infinitesimal small fluid element man			
4	notations arrive at the Momentum Equation	10	CO1	L3
5	Derive an expression for Substantial Derivative with usual notations	10	COI	L3
	Company of the state of the sta			
6	Explain the physical meaning for Divergence of Velocity and derive an expression with usual notations.	10	CO1	L3
7.	Apply Cramer's Rule to a Quasi-linear partial differential equation for the mathematical classification as elliptic, parabolic and hyperbolic.	10	CO2	L3
	OD			Lo
8.	Describe the essential features of hyperbolic and in the control of the control o			
-	behavior of CFD problems. Illustrate the following with relevant sketches	10	CO2	L3
9	i) Steady Boundary Layer Flows			-
	ii) Parabolized Viscous Flow	10	CO2	L2
10	explain the following with relevant sketches			
10	1) Steady Inviscid Supersonic Flow			
	n) Onsteady Inviscid Flow	10	CO2	L
CE	PART B - MULTIPLE CHOICE QUESTIONS D is the third approach for fluid flower by the state of the			
app	D is the third approach for fluid flow analysis. What are the other two			
· a) 7	Theoretical and experimental b) Physical and Mathematical d) Experimental and physical	1	COI	LI

SJCIT

Action .				4
2.	CFD carries out experiments. a) Observational b) Analytical c) Field d) Numerical	1	CO1	Li
3.	This created a problem in modelling supersonic blunt nose. a) Change of flow equations from elliptic to hyperbolic b) High speed with high temperature c) Supersonic Mach number d) High temperatures	1	CO1	L1
4.	What is the advantage of numerical methods over analytical method? a) Speed b) Cost c) Flexibility d) Time	1	CO1	LI
5.	Which of these plots are irrelevant to CFD post-processing? a) Contour plots b) Vector plots c) xy plots d) Bar plots	1	COI	Li
6.	An equation modelled using infinitesimally small element leads to a) Partial differential equation b) Integral equation c) Differential equation d) Linear differential equation	1	CO2	LI
7.	What are the two major types of boundary conditions? a) Wall and symmetry b) Inlet and outlet c) Dirichlet and Neumann d) Initial and physical	1	CO2	Li
8.	Which of these is not a type of flows based on their mathematical behavior? a) Circular b) Elliptic c) Parabolic d) Hyperbolic	1	CO2	LI
9.	The lines along which the derivatives of the dependent variables are indeterminate are called a) parabolic lines b) characteristic lines c) hyperbolic lines d) transition lines	1	CO2	Li
10	What are the two methods used to find the type of PDEs? a) Lagrangian Method and Eulerian method b) Cramer's method and Eulerian method c) Cramer's method and Lagrangian Method d) Cramer's method and Eigenvalue method	1	CO2	Li

COUP	COURSE OUTCOMES: On successful completion of this course, students should be able to		
CO-1	Describe the basics of CFD and parallel computing and explain the various flow models, its governing equations of fluid motion in differential and integral form. (L3)		
CO-2	Compare the physics of the flow with the mathematical behavior of partial differential equations. (L3)		
CO-3	Identify and compute the suitable grid generation and transformation techniques for a given problem. (L4)		
CO-4	Illustrate the fundamentals of discretization in FVM, FDM and FEM techniques. (L3)		
CO-5	Interpret different schemes and their stability in simple CFD applications. (L4)		

Question Number	Solution	Marks Allocated
l a)	A Two Computer Architectures used in Cfo - Vector processors - parallel processors **X Vector processors - A Configuration that Calour a Shing of Identified operations on an away of numbers finestaneously, then Saing both line is memory.	7-
\$)	A pendlu procuran - A Configuration that allows two a more fully functioning center procuring units each of which can handle different instructions and data streams and can execute separate parts of a program Shock capturing nethod A many computations of flows with shocks at disposed to have the shock waves appear	-d- B
	naturally within the Computational space of a direct result of the overall flow field bouten be as a direct result of the general algorithm, without any special breatment to lan are of the shocks themselvery buch approaches are called shock capturing method! No pro body constructions	-3- -d-

Subject Title: Computational flute Dyraming

Subject Code: 18AF72

Question Number	Solution	Marks Allocated
ک	as Explanation of the foor lefter of	-1-
	of forthe control volume is Lord control volume in Lord control volu	
6 1	the fluid moung througher puid	
7	Control Junjace Control	-2-
Ac.	Volume, 1	
	To Infortismed flut deliment of Infortismed fluts fred to Space with the element money through it along a streamline	
	fluta moung through it along a smanor	-2-
	At bhypred boundary	5
	6) + Euplandran of the physical boundary Conditions fuch as stationary with the Flow moring past It. then thou moring past It. then	-1-
	1121/21520	
1-70	Ino ship Condition anovaled with the limiterature at the surplie. If The is	
	I moderne property orth the Surpace solle.	-2-
poli	- fer how wall lenterature (72 Tw (at the wall)	
	- If wall lemperature is continuen	

Subject Title: Computational Hurs Synamus Subject Code: 18 At 72

Question Number	Solution	Marks
	gw = - K (DT)w (ar the wall)	Allocated
	It Unstready hear honster problem the woll despreader itself is the soundary construen	
6-	(3n) w = - gw (at to wall)	-2-
	- advatate wall (or) = 0 (or the wall)	
1 4	to apply and then the advabation wou	3
3.	* Deveta of combinety equation for fruite Control volume fruid in space	
	Control v Jurgan	-d-
- chi	Not man flow out of Time rote of deercan Control volume through? of man Instite Control volume furface. S	-4_
	Elemental man flow aeron the area ds	
	gunds 2 Juds	
*	Total man made the control volume, so	- d_
9	m vote of mercan of man harde V 6	
1000	ob III sar.	-8-

Subject Title: Computational Huta Dyramus

Subject Code: 18AET2

Question Number	Solution	Marks Allocated
	The rot of Leenan of main - De III sour = c : If suds = - De III su. s of III sour + II suds = 0.	-2-
8 00	The above equation so the inligital form of contrary equation and so called Conservation	10
A .	Disrotion of homentum equation considering Disrotion of Juney fluts climent. (24 + other dy) dridz The eyest of the equation of the experiment of the exp	-2-
	fromax forces acting on the flux element along is and an Budy forces. Surface forces - premier dishibitions & Mean number shrew dishibitions body forces on flux = Ita (dudydz) clement	-2-
	Not Surpre forces on the moung flurd clarace	

-	t Title: Comparational fluid Dynamics Subject Con	de: 18A£72
Question Number	Solution	Marks Allocated
C -	= [p-(p+of dn)] dydz + [tnx+ otm dn) -tu] dydz + [(tyx+ otyn dy)-tyn] dydz + [i	-d-
	+ [[Zyn + OZyn dy] - Zzn] dndy fr = [-OP + OZnn + OZyn + OZzn] dndy on - Ou fou = -OP + OZnn + OZyn+OZznep or - Or or or or or or or or or	- 2- h
	111/4 Sov = 20 + 0214 + 0214 + 0742+ 844 Ot 20 + 0712 + 0742+ 872 + 8/2	- 2- 10
5.	Sow = 20 + DT12 + DTy2 + DT22 + f-/2 Do D	7
	1,2 5(1,4,2,6,1) 1,0 5(1,4,2,12) 1,2 5(1,4,2,6,1) 1,0 5(1,4,2,12) 1,2 5(1,4,2,6,1) 1/28 (42-4,1) + 1,2 5(1,4,2,6,1) 1/28 (42-4,1) 1/28 (42-4,1) + 1,2 5(1,4,2,6,1) 1/28 (42-4,1) 1/28 (42-4,1) + 1,2 5(1,4,2,6,1) 1/28 (42-4,1) 1/28	7-

Subject Title: Computational Huta gynamics Subject Code: 1846

Question	Solution	Marks Allocated
Number	11 = (01) 11 + (01) 4.4 + (01) 1. hh. +(01) 21-2 + (01) 1. hh. +(01) 21-2 + (01) 1.	-2-
	low let of the text hat	
194	Lin 42-4 = V lm 22-21 2W. the off han to 12-2h to-h DS = u DS + u DS + w DF + OS Ot ou on ou of to of	-9-
	Dt 20 + V.D Dt 20 + V.D Dt 20 + V.D Dt 20 + V.D Dt 20 + V.D	-d- 10
۵	Clarge in volume of the Control volume DV. V= [(VAH) AS	-de
fu	In the limit ds to the fume becomes upon upon Or = 1 1 (v. st) ds = 1 vas	Z

Subject Title: Computational Auta Dynamy Subject Code: 18A87

Question Number	Solution	Marks Allocated
	$\frac{D(DN)}{D(DN)} = \int \int \int (U \cdot V) dV.$	-9_
	$\frac{D(\partial v)}{Dt} = (\nabla \cdot v) \delta v.$ $\nabla \cdot v = \frac{1}{\delta v} \frac{D(\delta v)}{Dt}$	-3-
	V. V & physically the lime rote of change of the volume of a moving flood element per cent volume	-dr 10
	a system of great linear equations a, du + b, du + C, du + d, du e f, -, a, du + b, du + C, du + d, du e f, -, a, du + b, du + C, du + d, du e f, -,	-2-
T Career	du = Du de + Du dy du = Du de + Du dy dr or de + Du dy	-9-
C+	[a, b, c, d,] [20/04] 2 [41] 2 [41	-2-

Subject Title: Computational Flut of Dynamy Subject Code: 1846

Question Number	Solution	Marks Allocated
	(a, c2-a, 4) dy - (a, d2-a, d1 + b, l2 - b, l4) dr dy	
J	+ (b,d2-b,d) dx = 0. a= a,c2-a, b= -(a,d2-a,d+b,c2-b,e) (= (b,d2-b,d)	- d-
	a for 12, 12 + b(or 12, 0) + c = 0. -: or 12, 2 = b ± . \ 5-49e 20	
	9 070 Two real à destrut characteristes b hypototre 020 parabotre	-d-
8.	DLO, Imagnary , ellopare running ch , and real characterisme	-d-
	chevaluation of Carrier through point p Some of defending remaining of carrier they are left running Chevaluation in Chevaluation in Chevaluation in Chevaluation in Chevaluation in Called the region of	- 2-
8	Chevaelististic I to Called the region of legion I to Called the region of Influence only the region of Superior the law characteristic lines and Subview the law characteristic lines and the disturbance is at every point.	-2-

Subject Title: Confruence Line Dynames Subject Code: 18AE72

Question Number	Solution	Marks Allocated
	Hegen II - that is information at pany a countries the information at pany a propagate which is outside the information at propagate along characteristics and information only region II and defendence - region III and four of defendence - region III and four of the pour of defends an only that part of the pour of defends an only that part of the boundary which intempted by and included boundary which intempted by and included	-2-
	of flow fields that are governed by	-2-
9	helpertole guations and the algorithms haveling to start with mitted solutions to start with mitted solutions by steasy boundary Cayin flown; outer usgo boundary by work soundary how Day work soundary	10 -d-
4	A gund flow is shided - Into two regions of gund flow is shided - Into two regions of a then layer adjacent to any total or and where In all the wissour years are contained flow outside then wineser of the boundary layer is thought by the boundary layer is thought the oundary layer is that the oundary layer is that the oundary layer is that the	-1-

Subject Title:

Subject Code:

Question Number	Solution	Marks Allocate
	Re is band on body length L is large (Re 2 Pub V int/p) and the Nauton Stoken equation is reduced to an approxim	-2_
	Set of equations called boundary layer aquations and are parabolic	5
	Thousand when flows over thousand the state of the Reynds number to low enough	-1-
	Rugado number to low enough the union your will reach well who the flow freed for away from the truspace they be flow to arrund to be stress then the resulting equations are called the	
	perabolised warren stokes (phr) agranoms In which laims You (NV.V + 2 proyon) Yoy (provon) and You (KOT/on) **Advantages of pris iquations ar - they are foughter	-d-
	- can be solved by mean of a downstream marching solutions	5
1000	The rest of the second	

Subject Title: Computational Hurd Ogname, Subject Code: 18AE72

Number
Number 10.

Subject Title: Computational Hurz synamy Subject Code: 18AE72

Question Number	Solution	Marks Allocated
APP 24	If the region influenced by P and the party of the boundary in the my plane upon when the following at P depends . Thanks from the known introduction and the following marches forward in time. To tolke	-2-
	three Irrangemed unsteady flow, Eulen	5
	equation an and.	
1.	a) Theoritical and Experimental	~
2.	d) Nemewed	
3.	a) Clange of from equations from ellipsize to hyposobe	t
4.	c) Henribility	-1
5.	dy bar plats	-1-
6.	a) partal differential equations	-In
7.	c) Drichler and Neumann	-1-
8.	as circular	elr
9,	b) Characteristic Ones	-6
10,	d) Cramers method and Ergen value	-6

||JAI SRI GURUDEV|| S.J.C. INSTITUTE OF TECHNOLOGY DEPARTMENT OF AERONAUTICAL ENGG. FOR THE ACADEMIC YEAR 2021- 22

COMPUTATIONAL FLUID DYNAMICS - 15AE72 TUTORIALS II

Sl. No.	Questions	CO	Level
	MODULE III		
1.	Define grid generation and describe the importance of boundary fitted co-ordinate system in CFD.	CO3	L2
2.	With the help of relevant sketches explain boundary fitted co- ordinate system	CO3	L2
3.	With the help of relevant sketches explain Elliptic Grid Generation	CO3	L2
4.	Explain the boundary fitted coordinate system for the divergent duct.	CO3	L2
5.	Describe elliptic grid generation with suitable example	CO3	L2
6.	List the features of Structured grids? Explain the different methods of structured grid generation with suitable sketches	CO3	L2
7.	i) Algebraic Methodsii) Differential Equation Technique or Numerical Method	CO3	L2
8.	List the features of Unstructured grids? Explain the different methods of unstructured grid generation with suitable sketches.	CO3	L2
9.	Explain the following with relevant sketchesi) Point Insertion Schemes or Delaunay-Voronoi Diagramii) Advancing Front Methods	CO3	L2
10.	List the differences between structured and unstructured grids	CO3	L2
11.	Discuss the need of grid generation of grid generation in CFD and summarize the following methods of grid generation. i) Surface Grid Generation ii) Multi Block Grid Generation iii) Meshless Methods	CO3	L2
12.	Define Mesh/Grid Quality and explain in detail the different measures of grid quality	CO3	L2
13.	i) Striving for quality ii) Grid design guidelines and total cell count	CO3	L2
4.	With the help of relevant sketches explain the adaptive grid generation.	CO3	L2
•	Differentiate Structured and Unstructured Adaptive grids with suitable sketches.	CO3	L2
	List the essential properties of grids	CO3	L2
1	Explain the importance of various coordinate systems in grid generation	CO3	L2
	Consider a Trapezoid in (x,y) plane as shown in fig. Generate a mesh corresponding to (ξ,η) coordinates at 0.2 units apart. Take	CO3	L3,L4

	four points of Trapezoid as $A(0,0)$, $B(20,0)$, $C(20,10)$ and $D(0,5)$		
	MODULE IV		
1.	Summarize the essence of discretization in CFD	CO4	L2
2.	Derive the Taylor Series approach for the construction of finite Difference Equation	CO4	L3
3.	With the help of neat grids explain the graphical concept of finite difference modules and list the pros and cons of higher order accuracy	CO4	L3
4.	Illustrate a portion of a boundary and explain what happens at the boundary. Also describe the reflection boundary conditions	CO4	L3
5.	Derive a difference equation for an unsteady one dimensional heat conduction equation with thermal diffusivity with usual notations.	CO4	L3
6.	Demonstrate the Explicit and Implicit approaches of solving CFD. List their advantages and disadvantages	CO4	L3

Steff incharge

PROFESSOR & HEAD

Department of Aeronautical Engineering
S.J.C. Institute of Technology
CHICKBALLAPUR-562101

Internal Test Question paper format – 2018 Scheme

Name of the staff: Mrs. Deepa M S

Date: 24.12.2021

Signature:

works lex more

Reviewer's Signature:

No 71/24/12/2021

NOTE: Only the following information's to be given to the students.

S.J.C. Institute of Technology

Department of Aeronautical Engineering Continuous Internal Evaluation: II Semester: VII

Subject Name & Code: COMPUTATIONAL FLUID DYNAMICS - 18AE72

Instructions

Duration: 90 minutes Date: 27.12.2021 Max Marks: 50+10(MCQs) Time: 2:00 to 3:30 PM

Answer ALL THE QUESTIONS

Question Number	PART A	Marks	СО	Levels
Hol	a) Explain the boundary fitted coordinate system for the divergent duct.	5	CO3	L2
1	b) List the features of structured grids? Describe the different methods of structured grid generation with suitable sketches.	5	C03	L3
	OR			
	a) Discuss the need of grid generation of grid generation in CFD and summarize the Surface Grid Generation	5	C03	L2
2	b) List the features of Unstructured grids? Explain the different methods of unstructured grid generation with suitable sketches.	5	CO3	L3
3	a) Define Mesh/Grid Quality and explain in detail the different measures of grid qualityb) Consider a Trapezoid in (x,y) plane as shown in fig.	5	C03	L2
3	Generate a mesh corresponding to (ξ,η) coordinates at 0.2 units apart. Take four points of Trapezoid as A(0,0), B(20,0), C(20,10) and D(0,5)	5	C03	L4
10	OR			
4	a) List the essential properties of grids and explain b) Consider a Trapezoid in (x,y) plane as shown in fig. Generate a mesh corresponding to (ξ,η) coordinates at 0.3	5	C03	L2
	units apart. Take four points of Trapezoid as $A(0,0)$, $B(30,0)$, $C(30,15)$ and $D(0,5)$	5	C03	L4

a) The PDE has no solution b) The solution to PDE is unique and it depends continuously on the initial and boundary conditions c) The PDE has more than one solution d) The solution to PDE is unique and independent of the initial and boundary conditions	1	CO3	L1
Discretization of the physical domain of interest results in a) Boundaries b) Discretized equations			0
c) Discrete cells d) Exponential equations Which of these methods is not a method of discretization?	1	CO4	L1
a) Finite volume method b) Finite difference method c) Spectral element method d) Finite element method	1	CO3	Li
Discretization of the governing equations result in a) Integral equations b) Quasi-linear partial differential equations c) Partial differential equations What is the main disadvantage of explicit schemes in a time-dependent problem a) Marching solution b) Simultaneous against	1	CO4	L1
a) Marching solution b) Simultaneous equations c) Small time-step size d) Small grid size	1?	CO4	L1

06#Form#02a - Rev. No. 02 Page: 1/3

f	What is advantageous in implicit schemes?				
6.	a) Error b) Consistency	1	CO4	L1	
	c) Convergence d) Stability		004	LI	
1920-01	Adaptive grids change automatically based on				
7.	a) flow field gradients b) time rate of change of the flow properties	1	CO3	L1	
	c) grid gradients d) time rate of change of the grid points		000	Li	
	Which type of grids is the best for flow over an airfoil?				
8.	a) Stretched grids b) Adaptive grids	1	COL		
	c) Boundary-fitted grids d) Elliptic grids	1	CO4	L1	
	If the domain and equations are not discretized, which of these will become true?				
	a) Numerical solution cannot be obtained		CO3		
9.	b) Analytical solution cannot be obtained				
	c) Initial conditions cannot be applied	1		L1	
	d) Mathematical model cannot be obtained				
	The discretized equation connects each element with				
	a) the northern and southern elements				
-					
0	b) the boundary elements	1	CO4	L1	
	c) the neighbouring elements		004	1.1	
	d) the eastern and western elements				

COURSE OUTCOMES:

On successful completion of this course, students should be able to

CO-1	Describe the basics of CFD and parallel computing and explain the various flow models, its governing equations of fluid motion in differential and integral form. (L3)
CO-2	Compare the physics of the flow with the mathematical behavior of partial differential equations. (L3)
CO-3	Identify and compute the suitable grid generation and transformation techniques for a given problem. (L4)
CO-4	Illustrate the fundamentals of discretization in FVM, FDM and FEM techniques. (L3)
CO-5	Interpret different schemes and their stability in simple CFD applications. (L4)

DEPARTMENT: AERONAUTICAL ENGINEERING

Scheme & Solutions- TEST- I/II/III

Date: 24/12/2011

Semester: W

Subject Title: Computational Hund Subject Code: 184872

	Dyanve	
Question Number	Solution	Marks Allocated
1 a)	A Sherch of a finishe boundary forther worker by some in physical plane and computational plane of the soundary of the soundar	-d-
	$M_{c} = \frac{y_{c}}{y_{s}}$, $\frac{y_{c}(n_{c})}{y_{s}(n_{c})} = 1$, $(2 M_{d})^{2}$ $M_{c} = \frac{y_{c}}{y_{s}} = \frac{y_{c}(n_{c})}{y_{c}(n_{c})} = 1$.	-1-
6) *	In of Various features of Structured golds - greatly amplytes the programming of the dolution	
X	- staves storage space - results in greater allerang A given family of co-ordinate lines do of interact te lines of constant & 2 do not crow lines of constant ?	-1-

Question Number	Solution	Mar Alloc
134 1655	Here there is a Structure to these	-1.
Devis	grid fuch grids on cales	
	Smetured grads	
	* Shurtured gold generation Consents	
	of three codegosis	1-1
	- Complex vorsable methods	1
	- Algebraic methods	
6-1	- Differential equation techniques	
	+ Algebrate nepols	
	N	-1-
1		
. 10	X 21 & X 2	
	man (h - 2 man - 2 m	
1 - 1	My = 1 man du &	
	My = 1/yran = 1/2 /ran dn \$	
	* Numerical methods	-1
	$\frac{\partial f}{\partial x} = \frac{4n}{T} \qquad \frac{\partial f}{\partial x} = -\frac{4n}{T} \qquad \frac{\partial f}{\partial x} = -\frac{4n}{T}$	
	My = 1/2 (I) -1 = n/2 /n = 45mn -	5
2 an	* The arrangement of Lucrets points	
	throughour the flow full is called a	
how it	grid. The way of delerating there goods	-1-
	so called grid gueretras which musley	
	the following	TO PERMIT

Question Number	Solution	Marks Allocated
S.	The general of an appropriate good from the Solution of the governing from equation over such a good	-1-
	J. Comp	-1-
-1-	A Surface grid gueration is a lime Communing step in the owned process, turque grid, and models brown value only as for as they allow high quelity flow predictions to be made at an alleptable cont.	-1.
	A very difficult to anim surface good quelity (arthogonality, curvature, structury) nethods of Constrainty surface good generation are Algebraic method, laplace eguctions, Thomas	5
b).	the middle coffer method * Recent reharch in Cfp has focused as ensmuhered grids. Where the grids prombs on should in the flow freed in a very megular	-2_
2	fashran. There non uniform grids in physical space. Can also be withouther as a much of mile volume culls. Unsmedered grids may be divided into three groups	

Subject Title: Compatational

Question Number	Solution	Marks
		Allocate
	- point mountain Scheme	
	- Advancing from methods	-2
	- Doman defendence techniques	
	x 41	
		-1
	1 1117 &	5
	Physical plane computational plane	- 3
3	such was dearly the set of the	
3 0)	+ For the same cell count, herahedal meshes	
6	will give more allurate solutions, especially	
	if the good lines an aligned with the flow.	
-	The most density should be high enough	-1-
	to capture all relevant for features	
	of the mesh adjacent to the war should	
- 1	in for enough to resolve the boundary	4
2	layer for . In boundary layers, good, her	-1-
1	layer for	
0	and prism / wedge alles are prejunes over	
	losis tels or pyramids.	
	lives, tels or pyramids. Three measures of quality are	
0	Out of the second of the secon	
- 0	- Skewnes	
	- Smoothrus (Change in Mas)	-1-
	- Asher Ratio	
	alpha I doll dix - Coll free 1 7 1	
5	Kewner - ophmal cell disk - Cell disk Ophmal cell disk Ophmal cell disk	
	ophnal collabor (1)	

Subject Title:

Subject Code:

uestion lumber	Solution	Marks Allocated
	Shurron for quad 2 man [Oman-90, 90-Omin]	la il
4-4	Asper Ratio	-1-
	Ospeer ratio = 1 high ospeer ratio quas	5
6)	1 H2 210 2 H	-1-
2	y(n) = h + n(H + h) = h	10
	g (n, y) = 242 Men, y), y/y = y h, n(H-h)	4-
4	Y(N) = S+ n(10-5) = S+ 52 = S+0.82	
	4(0.21 2 5+0.25×0.1 2 5.05	4
-1-	\(\langle \(\text{\gamma} \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
4	x(z, z), zL	1-
	y(5,n) = n[n+3(H+n)]	4
		5

Subject Title: Computational fluted agrames

Subject Code: 18AL Solution **Allocated** Number line of chemical properties of grids - poer quality grid will Came inacumate Solutions and a flow Convergence - Gre generation to the process of breaking up a physical domain with Complen generally Into Smaller fut domain A complex physical region is transferred to a drupte Computered regran - boundary condition become easter to Implement and approximately according A(0,0), B(30,0) C(30,15) D(0,5) 6) L=30, H=52h, H==15, A. y(n) = h+ n(H-h) & luyl = M/2 y(n) = 5+n(15-5) = 5+10n = 5+0.3n y(0.3) = 5+0.3x0.3 25+0.09 y(0.1)= 5.09 & (n,y) = 40. Meny12 7+0.3n

Subject Title: Computational Fluid Dynamis Subject Code: 18A672

Question	Solution	Marks
Number	F	Allocated
500	it muitiblock generation! It In this method of grid generation the phyweal domain is distilled into regions called blocks Geometrical plurishly of this light of grid generation is better structured but worse than unstructured grids	-R'/2-
10	I They are globally ('m-between the block) Unstructured but locally (within a block) Structured. This block structuring Can be Wived as Compronen between high geometical their bibly of felly unstructured gris and highly numerical affectors structured grids.	n -1
31	t many mesht grid generation proceders often lack automation, requiring many han bourn which are	_1
- 4-	becoming for more enformer than complete handward methylice or neithbers methods use a fet of noder scattered in a predipised manner within the prothem domain no impermentance on the noder is required relationship between the noder is required.	-d112-
6.69	Point Inserted Schomes of Delarang Voronoi diagram That difference methods was restricted to brothern where builtable and anale fyntims could be selected in order to down the governing equations in that bare dyntime	-241

ject Title: Computational Hwa syrans Subject Code: WALTE

Question Number	Solution	Marks Allocated
A 4	91 W	- d-
, po	Advancing from methods; There schemes of unstructured good guarders have been used with good futures ma Vereity of application. with this approach the good is advanced by adding cells	-2h
- Ji	at the front on it advances has the	-d- 10
7. 4	1-1/2-1 1/3/41 Hijts 1-1/3-1 1/3/41 Hijts - Town ada france	-2-
	De jois : Ui, - Ui-1, - pour ader barrage On jois : Ui, - Ui-1, - pour ader barrage On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Second ader On jois : Ui+1, - Uini, - Uini, - Second ader On jois : Ui+1, - Uini, - Uini, - Second ader On jois : Ui+1, - Uini, - Uini, - Second ader On jois : Ui+1, - Uini, - Uini, - Uini, - Second ader On jois : Ui+1, - Uini, - Uini	-d-

Subject Title: Computational Hurd Dynaming Subject	Code: 18A672
--	--------------

Question Number	Solution	Marks Allocated
	but of pron & com of fact dypunes	-4-
8.	(oy) = us-us +0 roy	10
	Oyl 1 boundary U = a thy + cy 2 - Polyromed apparaul	- 2
	us = a + b(204) + c(204)2 at 42 204	-2-
	\(\frac{\du}{\du} \right), = \frac{\du}{\du} \\ \d	-0-
	uly1 = 4 + (ou),4 + (ou), 47, + (ou) : 43/6+-	- 2-
	(ou) = -34 + 44, -43 +0 og 2	10
9.	$\frac{(3\alpha_1)_{11}}{(3\alpha_2)_{11}} = \frac{(3\alpha_1)_{11}}{(3\alpha_1)_{11}} + (3$	-2
	12 HW D2 (DN2) + OT DN ni + -	-d_
	(0u) ii) - (i+1, i) -(1, i) + (0u) 1 / 2 + - (0u) 1	-2
	Di 034); 2014	-1-

Subject Title: Computationd Hura Dynamy Subject Code: 1840

luestion Number	Solution	Marks Allocated
	(on)inj 2 Withing + Don	
-	04-1, j = U; j + (\frac{\partial}{\partial}) (-\partial) + (\frac{\partial}{\partial}) + (-2-
f.	(Out) 14 - Out +	10
10.	$\frac{9!}{9!} = \sqrt{\frac{3!}{5!}}$	
4.	$\frac{\partial \tau}{\partial t} \Big _{t}^{n} = \frac{7}{3t} \frac{n + 1}{3t} - \frac{10^{1}}{3t} \Big _{t}^{n} + - \frac{10^{1}}{3t} \Big _{t}^{n}$	ーユ
	$\begin{bmatrix} n_{11} \\ n \end{bmatrix} = \begin{bmatrix} 0 & 7 \\ \hline 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ \hline 1 & 1 \end{bmatrix} = \begin{bmatrix} 7$	-0_
٠ ١	mond 1 10 x 20 - 20 - 20 - 20	-2_
S. 1	8r - 2019 =0 Ti nel 9in - 2 (drein - 2014 + 5744) - 2011) Dr + 2 1 844) 7 2 - 7 my mine (gue	-2
	(Br) Dr + 2/ Ory 1 m - Johns	-2-
	Part B	10
1. 1	5. deponds on thinked a 6. I strubilly	
2.	- ordrete colls ta fow fred gradients	lvin
3.	d- Spectral Element mathod p. c - Bounday fitted gods 4 - Algebran equation q. a. Numerical John Commit	lxto
	0400	m = 10.
2. 6	- Snow time slep for 10. C. In neighbourg clamp	

NageD Retrum 24/12/21

Department of Peronautical Engineering

||JAI SRI GURUDEV|| S.J.C. INSTITUTE OF TECHNOLOGY DEPARTMENT OF AERONAUTICAL ENGG. FOR THE ACADEMIC YEAR 2021- 22

COMPUTATIONAL FLUID DYNAMICS - 15AE72 TUTORIALS III

Sl. No.	Questions	CO	Level
1.	MODULE IV		
	Summarize the essence of discretization in CFD	CO4	L2
2.	Derive the Taylor Series approach for the construction of finite Difference Equation	CO4	L3
3.	With the help of neat grids explain the graphical concept of finite difference modules and list the pros and cons of higher order accuracy	CO4	L3
4.	Derive a difference equation for an unsteady one dimensional heat conduction equation with thermal diffusivity with usual notations.	CO4	L3
5.	their advantages and disadvantages	CO4	L3
6.	Explain the different types of errors involved in solving finite difference equations and summarize the stability analysis	CO4	L2
7.	Explain Time marching technique with relevant equations	CO4	L2
8.	what is numerical dissipation and dispersion	CO4	L2
9.	With the help of neat grids and equations explain i) Relaxation Technique ii) Alternating Direct Implicit (ADI) Method iii) Successive Over relaxation and Under Relaxation iv) Second Order Lax-Wendorff Method v) Mid-Point Leap Frog Method vi) Upwind Scheme	CO4	L3
10.	Derive the expression for amplification factor and stability requirement for a numerical solution using Lax-Wendroff technique using 1D wave equation with one-step scheme.	CO4	L3
11.	Derive the expression for amplification factor and stability requirement for a numerical solution using central differencing for 1D unsteady heat conduction equation with genera notations	CO4	L3
12	MODULE V		
13.	Describe the finite volume discretization method. Differentiate between the finite difference method and	CO4	L2
14.	finite volume method.	CO4	L2
15.	Derive finite volumeupdate formula for 1D linear convective equation using upwind scheme. Derive finite volume update formula for 1D unsteady heat	CO4	L3
16 17	conduction equation using centered scheme. Explain upwind scheme in finite volume method.	CO4	L3
	Explain Flux vector splitting method.	CO4	L2
18		CO4	L2
19	Explain numerical viscosity, artificial dissipation and its mitigation method in finite volume discretization.	CO4	L2
20	Differentiate between the cell center finite volume approach and cell vertex finite volume approach.	CO4	L2

Staff Inelaye

PROPESSOR & HE Department of Aeronautical English S.J.C. Institute of Schnology CHICKBALLA 2002101

Internal Test Question paper format - 2018 Scheme

Name of the staff: Mrs. Deepa M S

Date: 17.01.2022

Signature:

Reviewer's Signature:

NOTE: Only the following information's to be given to the students.

S.J.C. Institute of Technology

Department of Aeronautical Engineering Continuous Internal Evaluation: III Semester: VII

Subject Name & Code: COMPUTATIONAL FLUID DYNAMICS – 18AE72

Instructions

Duration: 90 minutes Date: 19.01.2022

Max Marks: 50

Time: 2:00 to 3:30 PM

Answer ALL THE QUESTIONS

Questio Numbe		Marks	СО	Bloom's Level
	PART A			
1	Explain the different types of errors involved in solving finite difference equations and summarize the stability analysis	10	CO4	L2
	OR			
2	With the help of neat grids and equations explain Relaxation Technique	10	CO4	L2
3	Derive a difference equation for an unsteady one-dimensional heat conduction equation with thermal diffusivity with usual notations.	10	CO4	L3
	OR			
4	Derive the expression for amplification factor and stability requirement for a numerical solution using Lax-Wendroff technique using 1D wave equation with one-step scheme.	10	CO4	L3
5	With the help of neat grids and equations explain Mid-Point Leap Frog Method	10	CO4	L3
	OR			
	With the help of neat grids and equations explain Alternating Direct Implicit (ADI) Method	10	CO4	L3
7.	Differentiate between the cell center finite volume approach and cell vertex finite volume approach.	10	CO5	L2
	OR			

8.	Differentiate between the finite difference method and finite volume method.	10	CO5	L2
9	Describe numerical viscosity, artificial dissipation and its mitigation method in finite volume discretization.	10	CO5	L2
	OR			
10	Illustrate Flux vector splitting method with usual notations	10	CO5	L2

COURSE OUTCOMES:

On successful completion of this course, students should be able to

Describe the basics of CFD and parallel computing and explain the various flow models, its governing equations of floid models.
models, its governing equations of fluid motion in differential and integral form. (L3) Compare the physics of the flow with the mathematical behavior of partial differential equations. (L3)
Identify and compute the suitable grid generation and transformation techniques for a given problem. (L4)
Illustrate the fundamentals of discretization in FVM, FDM and FEM techniques. (L3)
Interpret different schemes and their stability in simple CFD applications. (L4)

DEPARTMENT: AERONAUTICAL ENGINEERING

Scheme & Solutions- TEST- I/II/III

Date: 18/1/2012

Semester:

Subject Title: Computational fleet Subject Code: 1846

Question Number	Solution	Marks Allocated
	Helpbert method, would be numeroly contrable if the members in the marching drucken encoded some prescribed value. The prescription for this maximum allowed Value comes in principle form a formal stability analysis of the governing	
6.	equations in first - diffuence from ** Considering One- dimensional heat Conduction equation as model equation OT = 2007 The Tree	
	Tintl-Tin = d(Titi - 27; n + Tin) At (DN): The numerical dolution of the about equation is influenced by two source of error.	-d-
. 6	Description over! It is the difference between the enact analytical solution of the partial differential equations and the enact solution of the corresponding difference agreemen.	-2-

Subject Title: Confutational Hurd Dyramy Subject Code: 18 At 72

Question Number	Solution	Marks Allocated
	error Introduced ofte a repetitive number of calculations in which the computer is commenting rounding the numbers to some dignificant figure If, A - analytical Solution of partial	-2-
	D- Frair Johnson of diffusion of Equation of Solution of the companies of	-d- 10
d.	Relaration (Rehnrque) The 16 14 13 12 12 Appenner method particular 10 fulled for the foliation 10 gettipme particular 10 gettipme particular 10 June 19	y -d-

	st Title: Computational fluta Dynamic Subject Co	de: 121 m
Question Number	Solution	Marks
	* Relanation leithreque can to esther enferer es improver.	Allocated
	enforcer et Imperer. Consider an Invinced, Incomprender, two dimensional probational you.	
	two dimensional molational you.	-2-
	Dre de 20	,
	(DN)2	7
	Dishal = (DN)2 (Out2 Pat, n. 19)2	20,
	Φίι) - (Δη) (Δη) - (Φ) +1,) + Φιη + Φις - σ μη μη σ μη σ μη σ μη σ μη σ μη σ μη	1+ \$1.5-1
ak n	Φ21 = 2012 Dy2 [Φ22+ p20 + Φ24+ d2 6 2042+2012 [(211)2 (211)2	-d-
	209 + 201 L (KIN) L (KIN) L	
	grant and are there met are	_,
	grown himsen	fal
	line sweeping from legs to right. This approach so called Government method	
	411) - 411) + a(p11) - pin)	-2-
51	W>1 - Sulleiser Overrelandhen WLI - Under relandhen	10.

Subject Title: Computational Fluid Dynamics

Subject Code: 18AL72

Question Number	Solution	Marks Allocated
Ĭ,	A Considering an unstready, One dimensional heat conduction equation with constant. Thermal diffusivity The 2 & 32T Tot 2 & The	-d-
	An censheady thermal Conduction is a barabolice Conduction is a barabolice partial differential equation which lends they to a which lends they to a in it! marching solution with respect to time to	-2-
	$ \frac{1}{2} \left(\frac{\partial T}{\partial t} \right)^{n} = \frac{1}{1} \frac{n+1-1}{2} - \left(\frac{\partial^{n}T}{\partial t^{n}} \right) \frac{\partial t}{\partial t} + \cdots \\ \left(\frac{\partial^{n}T}{\partial t^{n}} \right)^{n} = \frac{1}{1} \frac{1}{1} - 2 \frac{1}{1} \frac{1}{1} + \frac{1}{1} \frac{1}{1} \frac{1}{1} - \frac{1}{1} \frac{\partial^{n}T}{\partial t} + \frac$	-d-
	DT - x 3hT = 0. OT - x 3hT = 0. Ot pot oxt = 0 = Tint - Tin - Ot pot oxt = 1 at A (Tit1 - 2Tin + Tin) + Difference egrection	-70
	[-(04) m st + 2 (04) m th t] Truncation error Timel-Time 2 (11+1 - 271 n + 71-1)	-2-

SJCIT Page 3

06#Form#03 - Rev. No. 00 Subject Title: Computational Hund Dynamics Subject Code: 18AE72 Question Solution Number Marks **Allocated** Monday Technique! It is on implient fruite difformer method particularly to marching solution. -d-Consider an unsteady, two dimensional messed flow. The governing Euler guations are re-arranged in nonconservation from and are as obtained below, equations are Contracty. Of a - (fou + wor + por + vor 2 1-nomentario del o - (udu + vou + 1,00) y momentum or a - (wov + vov + 1 of) Energy de = - (ale + vde + pou + pou about equations are hyperbolic with respect to lime and an ever to terup Solution losing a lone-marche a numerical approach. of the Can-wendroff method to predicted an a Taylor Seves impansion in elim by chouring any dependent flow vavable, tor = Sii + (21) or + (34)

Number

Subject Title: Computational Fluid Dynamia

Mid point leap frog method:

Subject Code: ISAE72 Marks **Allocated** (ot);; 2 - (Si; with; -us,) + us,; Sinii - Anis + Sist Vi, St) - 24.37 vis Sti Su 11.60 I From order Schemes are not und to Solve PDES because of their Inherent alleway. The leap frog method is It simpler seeand order account method. When applied to the form order wave equation, this enplies one-step three

lime level scheme becoms ujn+1 - ujn+1 + e uj+1 -uji 20 14/ 61, ut + aux = Clan)2(22-1) wenn C(DN) 4 (944-10241) Lenux + * Amplyreation factor, Go #1 (1- 7 Sm B) 1/2 - id Smp

= tan-1 [- 7 8mb/± (1-228mp)/2)

-B1.

Subject Title: Computational Fluid Dyrama Subject Code: 18172

Question Number	Solution	Marks Allocated
	1.00 0.00 to leap prog method are Advantages of leap prog method are	2-
	at two-lim level, which so overcome -	10
6.	Attending Direct Import method! Attending Direct Import method! Consider a model equation based on the Consider of two-dimensional heat conductions unstready, two-dimensional heat conductions	
	Constrady, Two Spatred Amersons equation in two Spatred Amersons equation and a description of the source of the s	-d-
	2r+1/2 (-27)1/3 - 201/3)+1/2 (7)-1/3 +171-1	((!)
-10	+ 2 1/2 (Ti,5-1) + Ti,5-1) + 1/2 (-27); - 27	-d-
.01	* The relanders technique so an Heratro method, \$11; so unknown	

Subject Title: Computational Fleta Dyramics

Subject Code: 18Acm

Question Number	Solution	
	Plij = (On) 1 (Dy 12 Phi) + 2 (Dy 1 + 2 (D) 1) +	
	\$1.5+1, + \$1.67	
	1 = (On) Dy' = [0,300 + 0,300] 2001 + 2001 [0,300 + 0,300]	2-
	$+\phi_{24}^{h}+\phi_{2}$	
	This - Tig = 2 Titis - 2719 noth + This	
.76	+ 271.04, -201.5 + M.J.	-2-
	A Mais - B Might A Arithing on Ki	
	A = dot B = 1+ dot (Un)-	
5	KI = -Tig - 2 1t (Tist, - 20)g+7	(17)
	C= LOT D= H LOT Syn	

Subject Title: Computational flut Dynamic Subject Code: 18AEn			
Question Number	Solution	Marks Allocated	
7.	Cell centered Frants volume methods		
	- Straight forward choice - gordlell		
	they is considered on a froste volume	-1-	
	- Cell conhaids are the conhail points		
	- Idealy suited for handling griter arms	-1-	
	- hims clements considering of herahedra prilm, pyramid and tet cells.	7	
	- contributing polyheard/polygonal volumes	-1-	
	- adaptive mesher with hanging modes		
	- Boundary Candother is salited Through		
- 17	interporal from calculation at the faces falling		
	on the doman boundary		
		-1-	
	Cell verter frot volume methods		
*	hour I grid holds before and in which	-	
	- Dual first volume so Communited around the		
, ,	much rodes		
	nohilarly wanted around		
	to be advantagens for uninactions	-1	
4, 84	Inter gular I telrahedral grade or		
	male district some		
	- Not sustable for gottes certs homes elements considering of henchedr	-1-	
	profin, byranos and the celes		
	- Ambihary polyhedrad volumes		

Subject Title: Computational Flute gyranty Subject Code: 18AE72

Question	Solution	Marks Allocated
Number	to the state of th	
	-can leas to analleprath Theres deed toler	4
	1 - be entered come	
	-Boundary hatment can be inforted come	-1
	Dirchert condition done the mesh weather	
	for an the domain boundaries	
	four an in	
	1	
	- T-724 (8X6)	-1-
	Birite dypound and Loute Wolcom method	
8.	Divide Collection of the both webite	
	- Forthe difference method districts attan is	
	band upon the dyfounted form of the pole -	- 2
	sand april at the	0,0
	to he followed. Each dervetor is replaced	
	with an approximate difference fermula.	
	The Computational domain is usual discretists	
	into herahedral cells and foliation as obtained	1-
	MO rendered cars	
	at each nodal point.	
	The drubbetra nexults in a syntheting	-1-
	equations of the variable or radal points.	
	equations of a	
- 1	- They have a shreete representation of the.	-1-
i		
- 1	Foletran	
	for: - is a method of representing and	
i	heated differential paration & At	
	avoluting partial differential equation in the	-d-
	from of algebraic equations	
	De Par Wolum Migrah wolum 4.15	
	In from volume Migrat, volume Inligial	
	in a partial experience equation that company	-1-
	a divergine lever convert. I to furtee.	
	a divergence leins, convented to surface helgras.	
	waging.	

SJCIT Page 11

Subject Title: Computational flut Dyramy Subject Code: 18AE72 Question Marks Number Allocated - Uses dwagen theorem for conversions 1-- cereful for problems with body filled Co-coands synhin 10 Numerical Visionity to Artified Description - Consider 10 linear corrective equation with -da; mel = uin - cot (ain - uin) -d-CON Indian artificed differentin due to -dnumerical viduosity. - Form order methods an different to - practically, a found order method a and for manhal application beaut - 2 of trabely considerations
use of them brothers
called as high resolution schem 10.

Subject Title: Computational fleid Dynamics

Subject Code: (JAE 72

Question			
Number	Hun vector Splitting method;		
	Considering 10 Conservation Cow:	-2_	
	Considu a 10 grid system		
	- 1 i-1/2 i+1/2 i+1/2		
	1 (or + of on) an so Jot du + John duso	-2-	
0.1	Cell awage quantity 1-12		
	Cell awage quantity 1-12 Cell awage quantity 1-12 Us to Udr Gam Divergence Theorems (9. f) der 2 d (d), d?)	-2-	
	John dus Pitih - forth		
	d (UDW) + firth - Firth 20,		
	Euplack method. for f Cum)	-2-	
-	Implies method - f = f(units)		
	Un+1-un + A+1/2-A+1/2 20	d-	
10.	——————————————————————————————————————	10	

Stoff Inchange

Reviewer

Hod (AE)

Branch : AE Semester : 7

Sl NO.	USN	18AE72
1	1SJ18AE001	30
2	1SJ18AE003	24
3	1SJ18AE004	27
4	1SJ18AE006	36
5	1SJ18AE007	33
6	1SJ18AE008	26
7	1SJ18AE009	26
8	1SJ18AE011	32
9	1SJ18AE012	31
10	1SJ18AE014	30
11	1SJ18AE015	22
12	1SJ18AE016	27
13	1SJ18AE017	37
14	1SJ18AE018	20
15	1SJ18AE019	36
16	1SJ18AE021	30
17	1SJ18AE022	27
18	1SJ18AE023	36
19	1SJ18AE024	34
20	1SJ18AE025	24
21	1SJ18AE026	20
22	1SJ18AE027	23
23	1SJ18AE028	28
24	1SJ18AE029	32
25	1SJ18AE031	27
26	1SJ18AE032	30
27	1SJ18AE033	33
28	1SJ18AE034	33
29	1SJ18AE035	26
30	1SJ18AE036	31
31	1SJ18AE037	29
32	1SJ18AE038	30
33	1SJ18AE039	39
34	1SJ18AE040	30
35	1SJ18AE041	30
20	1011015042	30

l NO.	USN	18AE72
37	1SJ18AE043	19
38	1SJ18AE044	
39	1SJ18AE045	26
40	1SJ18AE046	38
41	1SJ18AE048	28
42	1SJ18AE049	26
43	1SJ18AE050	36
44	1SJ18AE051	38
45	1SJ18AE052	26
46	1SJ18AE053	24
47	1SJ18AE054	32
48	1SJ18AE055	34
49	1SJ18AE056	23
50	1SJ18AE057	30
51	1SJ18AE058	32
52	1SJ18AE059	23
53	1SJ18AE060	30
54	1SJ18AE061	28
55	1SJ18AE062	29
56	1SJ18AE064	35
57	1SJ18AE065	30
	1SJ18AE045 1SJ18AE048 1SJ18AE049 1SJ18AE050 1SJ18AE051 1SJ18AE052 1SJ18AE053 1SJ18AE055 1SJ18AE056 1SJ18AE057 1SJ18AE058 1SJ18AE060 1SJ18AE061 1SJ18AE061 1SJ18AE062 1SJ18AE063	Frier

J.C. IMS

Branch

Branch : AE

Semester: 7

SI NO.	USN	17AE72
1	1SJ16AE011	19
2	1SJ17AE008	19

PROFESOR 8 LINE THE POLITICAL OF PROFESOR 8 LINE OF PROFESOR ST. C. Institute of Technology and Technology and

Scanned by CamScanner