

||JAI SRI GURUDEV||

S J C INSTITUTE OF TECHNOLOGY

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

DESIGN AND ANALYSIS OF ALGORITHMS LAB MANUAL

[18CSL47]

(IV SEM ISE-CBCS SCHEME)

Prepared By:

Mrs. BHANUMATHI S

Assistant Professor

Department of ISE

SJCIT, Chickballapur

S.J.C.INSTITUTE OF TECHNOLOGY

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

CHICKBALLAPUR -562101

Year 2020

 Estd: 1986

Department of Information Science & Engineering

MISSION OF THE INSTITUTE

VISION OF THE INSTITUTE

Preparing Competent Engineering and Management Professional to Serve the Society

 M1: Providing Students with a Sound Knowledge in Fundamentals of their branch of

Study

 M2: Promoting Excellence in Teaching, Training, Research, and Consultancy

 M3: Exposing Students to Emerging Frontiers in various domains enabling

Continuous Learning

 M4: Developing Entrepreneurial acumen to venture into Innovative areas

 M5: Imparting Value-based Professional Education with a sense of Social Responsibility

 Estd: 1986

Department of Information Science & Engineering

VISION OF THE DEPARTMENT

Educating Students to Engineer Information Science and Technology

for Advancing the Knowledge as to best serve the Real-world.

MISION OF THE DEPARTMENT

M1: Focusing on Fundamentals and Applied Aspects in both Information

Science Theory and Programming practices.

M2: Training comprehensively and encouraging R & D culture in

trending areas on Information Technology.

M3: Collaborating with premier Institutes and Industries to nurture

Innovation and learning, in cutting-edge Information Technology.

M4: Preparing the students who are much Sought-after, Productive and

Well-respected for their work culture having Lifelong Learning practice.

M5: Promoting ethical and moral values among the students so as to

enable them as responsible professionals.

PROGRAM EDUCATIONAL OBJECTIVES

PEO1: Engage in a Successful professional career in Information Science and

Technology.

PEO2: Pursue higher studies and research to advance the knowledge for Solving

Contemporary Problems in the IT industry.

PEO3: Adapt to a constantly changing world through Professional Development

and Sustained Learning.

PEO4: Exhibit professionalism and teamwork with social concern.

PEO5: Develop Leadership and Entrepreneurship Skills by incorporating

Organizational goals.

PROGRAM SPECIFIC OUTCOMES

PSO1: Apply the knowledge of data structures, database systems, system

programming, networking web development, and AI & ML techniques in

engineering the software.

PSO2: Exhibit solid foundations and advancements in developing software /

hardware systems for solving contemporary problems.

 Estd: 1986

Department of Information Science & Engineering

DESIGN AND ANALYSIS OF ALGORITHM LABORATORY

[As per Choice Based Credit System (CBCS) scheme]

(Effective from the academic year 2018 -2019)

SEMESTER – IV

Subject Code 18CSL47 IA Marks 40
Number of Lecture Hours/Week 2:2 Exam Marks 60
Total Number of Lecture Hours 36 Exam Hours 03

Course objectives: This course will enable students to

 Design and implement various algorithms in JAVA

 Employ various design strategies for problem solving.

 Measure and compare the performance of different algorithms.

Description

Design, develop, and implement the specified algorithms for the following problems using
Java language under LINUX /Windows environment. Net beans/Eclipse IDE tool can be used
for development and demonstration.

LIST OF EXPERIEMENTS

1a) Create a Java Class Called Student with the following details as variables within it

(i) USN

(ii) Name

(iii) Branch
(iv) Phone

Write a Java program to create n Student objects and print the USN, Name, Branch, and
Phone of these objects with suitable headings.

1b) Write a Java program to implement the Stack using arrays. Write Push(), Pop(), and Display()

methods to demonstrate its working.

2a) Design a super class called Staff with details as Staff Id, Name, Phone, Salary. Extend this class
by writing three subclasses namely Teaching (domain, publications), Technical (skills), and

Contract (period). Write a Java program to read and display at least 3 staff objects of all three
categories.

2b) Write a Java class called Customer to store their name and date_of_birth. The date_of_birth

format should be dd/mm/yyyy. Write methods to read customer data as <name, dd/mm/yyyy>
and display as <name, dd, mm, yyyy> using StringTokenizer class considering the delimiter
character as “/”.

3a) Write a Java program to read two integers a and b. Compute a/b and print, when b is not
zero. Raise an exception when b is equal to zero.

3b) Write a Java program that implements a multi-thread application that has three threads. First

thread generates a random integer for every 1 second; second thread computes the square of
the number and prints; third thread will print the value of cube of the number.

4) Sort a given set of n integer elements using Quick Sort method and compute its time

complexity. Run the program for varied values of n> 5000 and record the time taken to sort.

Plot a graph of the time taken versus non graph sheet. The elements can be read from a file or

can be generated using the random number generator. Demonstrate using Java how the divide-
and-conquer method works along with its time complexity analysis: worst case, average case
and best case.

5) Sort a given set of n integer elements using Merge Sort method and compute its time complexity.
Run the program for varied values of n> 5000, and record the time taken to sort. Plot a graph of

the time taken versus non graph sheet. The elements can be read from a file or can be generated
using the random number generator. Demonstrate using Java how the divide- and-conquer
method works along with its time complexity analysis: worst case, average case and best case.

6) Implement in Java, the 0/1 Knapsack problem using (a) Dynamic Programming method

(b) Greedy method.

7) From a given vertex in a weighted connected graph, find shortest paths to other vertices
using Dijkstra's algorithm. Write the program in Java.

8) Find Minimum Cost Spanning Tree of a given connected undirected graph
using Kruskal'salgorithm. Use Union-Find algorithms in your program.

9) Find Minimum Cost Spanning Tree of a given connected undirected graph using

Prim's algorithm

10)Write Java programs to

(a) Implement All-Pairs Shortest Paths problem using Floyd's algorithm.
(b) Implement Travelling Sales Person problem using Dynamic programming.

11) Design and implement in Java to find a subset of a given set S = {Sl, S2,.....,Sn} of n positive
integers whose SUM is equal to a given positive integer d. For example, if S ={1, 2, 5, 6,
8} and d= 9, there are two solutions {1,2,6}and {1,8}. Display a suitable message, if the
given problem instance doesn't have a solution.

12) Design and implement in Java to find all Hamiltonian Cycles in a connected
undirected Graph G of n vertices using backtracking principle.

Course Outcomes: The students should be able to:

 Design algorithms using appropriate design techniques (brute-force, greedy,
dynamic programming, etc.)

 Implement a variety of algorithms such assorting, graph related, combinatorial, etc., in a
high level language.

 Analyze and compare the performance of algorithms using language features.

 Apply and implement learned algorithm design techniques and data structures to
solve real-world problems.

Graduate Attributes

 Engineering Knowledge

 Problem Analysis

 Modern Tool Usage

 Conduct Investigations of Complex Problems

 Design/Development of Solutions

Marks distribution: Procedure + Conduction + Viva: 20 + 50 + 10 (80). Change of

experiment is allowed only once and marks allotted to the procedure part to be

made zero

CO-PO Mapping Table (In the scale of 3) CO-PSO Mapping Table

CO/PO 1 2 3 4 5 6 7 8 9 10 11 12 CO/PSO 1 2 3 4

1 3 3 3 2 1

2 2 2 2 2

3 3 3 2 2 2 3

4 3 3 2 2 2 2 4 2

5 3 3 1 1 2 2 5 3

6 3 2 3 2 1 1 3 1 1 3 6 2

COURSE OUTCOMES

CO1: Design algorithms using appropriate design Techniques (brute-

force, reedy, Dynamic programming, etc.)
CO2: Implement a variety of algorithms such as sorting, graph

related, combinatorial, etc., in a high level language.

CO3: Analyze and compare the performance of algorithms using language features.

CO4: Apply and implement learned algorithm design techniques and

data structures to solve real-world problems.

CO5: Analyze algorithms to deduce their time complexities.

CO6: Choose appropriate algorithms techniques to solve computational

problems.

CONTENTS

PROGRAM TITLE PAGE NO

1a)Program to read student details
1-7

1b) Java program to implement the Stack using arrays. Write Push(),

Pop() and Display()

8-18

2a) Java program to read and display at least 3 staff objects of all three

categories.
19-25

2b) Java class called Customer to store their name and date_of_birth. The

date_of_ birth format should be dd/mm/yyyy. Write methods to read

customer data as <name, dd/mm/yyyy> and display as <name, dd, mm,

yyyy> using StringTokenizer class considering the delimiter
character as “/”.

26-29

3a) Java program to read two integers a and b. Compute a/b and print,
when b is not zero. Raise an exception when b is equal to zero.

30-33

3b) Java program that implements a multi-thread application that has three

threads. First thread generates a random integer for every 1 second; second

thread computes the square of the number and prints; third

thread will print the value of cube of the number

34-42

4) Quick Sort 43-49

5) Merge Sort 50-55

6) 0/1 Knapsack Problem using

(i)Dynamic Programming

(ii) Greedy Method

56-62

63-67

7) Dijkstra's algorithm 68-71

8) Find Minimum Cost Spanning Tree of a given connected undirected

graph using Kruskal's algorithm.

72-80

9) Find Minimum Cost Spanning Tree of a given connected undirected

graph using Prim's algorithm

81-86

10a) Implement All-Pairs Shortest Paths problem using Floyd's

algorithm.

87-90

10b) Implement Travelling Sales Person problem using Dynamic

Programming.

91-94

11) SubSet Problem 95-99

12)Hamiltonian Cycle Problem 100-105

Additional Programs 106-110

APPENDIX:-VIVA VOICE QUESTIONS 111-120

LAB EVALUATION RUBRICS 121

Page 1 Dept of ISE, SJCIT

EXPERIMENT 1A

PROGRAM STATEMENT
Create a Java class called Student with the following details as variables within it.

(i) USN

(ii) Name

(iii) Branch

(iv) Phone
Write a Java program to create n Student objects and print the USN, Name, Branch, and

Phone of these objects with suitable headings.

CONCEPT
In Java everything is encapsulated under classes. Class is the core of Java language. Class can

be defined as a template/ blueprint that describe the behaviors /states of a particular entity. A

class defines new data type. This type can be used to create object of that type. Object is an
instance of class. You may also call it as physical existence of a logical template class.

A class is declared using class keyword. A class contains both data and code that operate on

that data. The data or variables defined within a class are called instance variables and the code

that operates on this data is known as methods.
A simple class example

class Student

{

String USN,name , branch;

int phoneno;

}

Object is an instance of a class created using a new operator. The new operator returns a reference

to a new instance of a class. This reference can be assigned to a reference variable of the class.

The process of creating objects from a class is called instantiation. An object encapsulates state and

behavior.

An object reference provides a handle to an object that is created and stored in memory. In Java,

objects can only be manipulated via references, which can be stored in variables.

Creating variables of your class type is similar to creating variables of primitive data types, such

as integer or float. Each time you create an object, a new set of instance variables comes into

existence which defines the characteristics of that object. If you want to create an object of the

class and have the reference variable associated with this object, you must also allocate memory

for the object by using the new operator . This process is called instantiating an object or

creating an object instance. In following statement obj is instance/object of Student class.

Student obj=new Student();

An array of objects is created just like an array of primitive type data items in the following

way.

Student[] obj_Array = new Student[7];

Design & Analysis of Algorithm Lab Manual 2020

Page 2 Dept of ISE, SJCIT

However, in this particular case, we may use a for loop since all Student objects are created
with the same default constructor.

for (int i=0; i<obj_Array.length; i++)

{

obj_Array[i]=new Student();

}Constructor

Constructor in java is a special type of method that is used to initialize the object. Java

constructor is invoked at the time of object creation. It constructs the values i.e. provides data

for the object that is why it is known as constructor.

Types of java constructors

There are two types of constructors:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

A constructor that have no parameter is known as default constructor.

Student()

{

//block of code

}

Object creation:

Student obj=new Student();

Constructor with arguments is known as parameterized constructor.

Student(int i,String n)

{

id = i;

name = n;

}

Object creation:

Student4 s1 = new Student4(111,"Karan");

Design & Analysis of Algorithm Lab Manual 2020

Page 3 Dept of ISE, SJCIT

PROGRAM

/* 1a. Create a Java class called Student with the following details as variables within it.

(i) USN

(ii) Name

(iii) Branch

(iv) Phone

Write a Java program to create nStudent objects and print the USN, Name, Branch, and Phone

of these objects with suitable headings.

*/

import java.util.Scanner;

class Student

{

String USN, Name, Branch, Phone;

Scanner input = new Scanner(System.in);

void read()

{

System.out.println("Enter Student Details");

System.out.println("Enter USN");

USN = input.nextLine();

System.out.println("Enter Name");

Name = input.nextLine();

System.out.println("Enter Branch");

Branch = input.nextLine();

System.out.println("Enter Phone");

Phone = input.nextLine();

}

void display()

{

System.out.printf("%-20s %-20s %-20s %-20s", USN, Name, Branch, Phone);

}

}

class studentdetails

{

Design & Analysis of Algorithm Lab Manual 2020

Page 4 Dept of ISE, SJCIT

public static void main(String[] args)

{

Scanner input = new Scanner(System.in);

System.out.println("Enter number of student details to be created");

int number = input.nextInt();

Student s[] = new Student[number];

// Read student details into array of student objects

for (int i = 0; i < number; i++)

{
s[i] = new Student();

s[i].read();

}

// Display student information

System.out.printf("%-20s %-20s %-20s %-20s", "USN", "NAME", "BRANCH",

"PHONE");

for (int i = 0; i < number; i++)

{

}

input.close();

}

}

System.out.println(); s[i].display();

Design & Analysis of Algorithm Lab Manual 2020

Page 5 Dept of ISE, SJCIT

OUTPUT

Enter number of student details to be created

3

Enter Student Details

Enter USN

1sj16cs097

Enter Name

ramu

Enter Branch

cse

Enter Phone

992345678

Enter Student Details

Enter USN

1sj15me45

Enter Name

harish

Enter Branch

med

Enter Phone

984512345

Enter Student Details

Enter USN

1sj17ec111

Enter Name

shalini

Enter Branch

ece

Enter Phone

9982345678
USN NAME BRANCH PHONE

1sj16cs097 ramu cse 992345678

1sj15me45 harish med 984512345

1sj17ec111 shalini ece 9982345678

 NOTES AND OUTPUT:

Design & Analysis of Algorithm Lab Manual 2020
0

Page 6 Dept of ISE, SJCIT

Page 7 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 8 Dept of ISE, SJCIT

EXPERIMENT 1B

PROGRAM STATEMENT
Write a Java program to implement the Stack using arrays. Write Push(), Pop(), and Display()

methods to demonstrate its working

CONCEPT
In Java everything is encapsulated under classes. Class is the core of Java language. Class can be

defined as a template/ blueprint that describe the behaviors /states of a particular entity. A class

defines new data type. This type can be used to create object of that type. Object is an instance of

class. You may also call it as physical existence of a logical template class. A class is declared using

class keyword. A class contains both data and code that operate on that data. The data or variables

defined within a class are called instance variables and the code that operates on this data is known

as methods.
A simple class example

class Student

{

String USN,name , branch; int phoneno;

}

Object is an instance of a class created using a new operator. The new operator returns a reference to a

new instance of a class. This reference can be assigned to a reference variable of the class. The process

of creating objects from a class is called instantiation. An object encapsulates state and behavior. An

object reference provides a handle to an object that is created and stored in memory. In Java, objects can

only be manipulated via references, which can be stored in variables. Creating variables of your class

type is similar to creating variables of primitive data types, such as integer or float. Each time you create

an object, a new set of instance variables comes into existence which defines the characteristics of that

object. If you want to create an object of the class and have the reference variable associated with this

object, you must also allocate memory for the object by using the new operator. This process is called

instantiating an object or creating an object instance. In following statement obj is instance/object of

Student class.

Student obj=new Student();

An array of objects is created just like an array of primitive type data items in the following

way.

Student[] obj_Array = new Student[7];

However, in this particular case, we may use a for loop since all Student objects are created
with the same default constructor.

for (int i=0; i<obj_Array.length; i++)

{

obj_Array[i]=new Student();

Design & Analysis of Algorithm Lab Manual 2020

Page 9 Dept of ISE, SJCIT

}

Constructor

Constructor in java is a special type of method that is used to initialize the object. Java

constructor is invoked at the time of object creation. It constructs the values i.e. provides data

for the object that is why it is known as constructor.

Types of java constructors

There are two types of constructors:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

A constructor that have no parameter is known as default constructor.

Student()

{

//block of code

}

Object creation:

Student obj=new Student();

Constructor with arguments is known as parameterized constructor.

Student(int i,String n)

{

id = i;

name = n;

}

Object creation:

Student4 s1 = new Student4(111,"Karan");

Design & Analysis of Algorithm Lab Manual 2020

Page 10 Dept of ISE, SJCIT

PROGRAM

/* 1b. Write a Java program to implement the Stack using arrays. Write Push(), Pop(), and Display() methods

to demonstrate its working. */

import java.util.*;

class arrayStack

{

int arr[];

int top, max;

arrayStack(int n)

{

max = n;

arr = new int[max];

top = -1;

}

void push(int i)

{

if (top == max - 1)

System.out.println("Stack Overflow");

else

}

arr[++top] = i;

void pop()

{

if (top == -1)

{

}

else

{

}

}

System.out.println("Stack Underflow");

int element = arr[top--];

System.out.println("Popped Element: " + element);

void display()

{

System.out.print("\nStack = ");

if (top == -1)

{

Design & Analysis of Algorithm Lab Manual 2020

Page 11 Dept of ISE, SJCIT

System.out.print("Empty\n");

Page 12 Dept of ISE, SJCIT

return;

}

for (int i = top; i >= 0; i--)

System.out.print(arr[i] + " ");

System.out.println();

}

}

class Stack

{

public static void main(String[] args)

{

Scanner scan = new Scanner(System.in);

System.out.println("Enter Size of Integer Stack ");

int n = scan.nextInt();

boolean done = false;

arrayStack stk = new arrayStack(n);

char ch;

do

{

System.out.println("\nStack Operations");

System.out.println("1. push");

System.out.println("2. pop");

System.out.println("3. display");

System.out.println("4. Exit");

int choice = scan.nextInt();

switch (choice)

{

case 1:

case 2:

case 3:

case 4:

System.out.println("Enter integer element to push");

stk.push(scan.nextInt());

break;

stk.pop();

break;

stk.display();

break;

done = true;

break;

default:

System.out.println("Wrong Entry \n ");

Design & Analysis of Algorithm Lab Manual 2020

Page 13 Dept of ISE, SJCIT

break;

}

} while (!done);

}

}

OUTPUT

Enter Size of Integer Stack

5

Stack Operations

1. push

2. pop

3. display

4. Exit

1

Enter integer element to push

1

Stack Operations

1. push

2. pop

3. display

4. Exit

1

Enter integer element to push

2

Stack Operations

1. push

2. pop

3. display

Design & Analysis of Algorithm Lab Manual 2020

Page 14 Dept of ISE, SJCIT

4. Exit

1

Enter integer element to push

3

Stack Operations

1. push

2. pop

3. display

4. Exit

1

Enter integer element to push

4

Stack Operations

1. push

2. pop

3. display

4. Exit

1

Enter integer element to push

5

Stack Operations

1. push

2. pop

3. display

4. Exit

1

Design & Analysis of Algorithm Lab Manual 2020

Page 15 Dept of ISE, SJCIT

Enter integer element to push

6

Stack Overflow

Stack Operations

1. push

2. pop

3. display

4. Exit

3

Stack = 5 4 3 2 1

Stack Operations

1. push

2. pop

3. display

4. Exit

2

Popped Element: 5

Stack Operations

1. push

2. pop

3. display

4. Exit

2

Popped Element: 4

Stack Operations

1. push

Design & Analysis of Algorithm Lab Manual 2020

Page 16 Dept of ISE, SJCIT

2. pop

3. display

4. Exit

2

Popped Element: 3

Stack Operations

1. push

2. pop

3. display

4. Exit

2

Popped Element: 2

Stack Operations

1. push

2. pop

3. display

4. Exit

3

Stack = 1

Stack Operations

1. push

2. pop

3. display

4. Exit

2

Popped Element: 1

Design & Analysis of Algorithm Lab Manual 2020

Page 17 Dept of ISE, SJCIT

Stack Operations

1. push

2. pop

3. display

4. Exit

2

Stack Underflow

Stack Operations

1. push

2. pop

3. display

4. Exit

3

Stack = Empty

Stack Operations

1. push

2. pop

3. display

4. Exit

4

Design & Analysis of Algorithm Lab Manual 2020

Page 18 Dept of ISE, SJCIT

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 19 Dept of ISE, SJCIT

EXPERIMENT 2A

PROGRAM STATEMENT:
Design a super class called Staff with details as StaffId, Name, Phone, Salary. Extend this

class by writing three subclasses namely Teaching (domain, publications), Technical (skills),

and Contract (period). Write a Java program to read and display at least 3 staff objects of all

three categories.

CONCEPT:
Here in this given problem we shall use inheritance for extending Staff class into: Teaching, Technical

and Contract 3 subclasses using extends keyword. Each class is having the variables as given in the

bracket. We will import the util package Scanner class to read 3 objects of each class. Create a

constructor of Staff class to initialize StaffId, Name, Phone, Salary. And one display function into the

Staff class to display the entered values. All the data members of Staff will be inherited in Teaching,

Technical and Contract using super keyword that calls the super class constructor to base class. Other

additional data members of the subclasses would be initialized using there own constructor. Also along

with there own constructors all 3 subclasses will have there own display method that invokes display

method of super class Staff. Now in main() method using Scanner class we will read the values

accordingly. To display these values we will create array of object of size 3 for each subclass Teaching,

Technical and Contract. Using this array of objects we will display the values entered previously by

invoking display method of each subclass. Below is the program that demonstrates the same.

PROGRAM:
/** Design a super class called Staff with details as StaffId, Name, Phone, Salary. Extend this

class by writing three subclasses namely Teaching (domain, publications), Technical (skills),

and Contract (period).

Write a Java program to read and display at least 3 staff objects of all three categories.*/

import java.util.Scanner;

class Staff

{

String StaffID, Name, Phone, Salary;

Scanner input = new Scanner(System.in);

void read()

{

System.out.println("Enter StaffID");

StaffID = input.nextLine();

System.out.println("Enter Name");

Name = input.nextLine();

Design & Analysis of Algorithm Lab Manual 2020

Page 20 Dept of ISE, SJCIT

System.out.println("Enter Phone");

Phone = input.nextLine();

System.out.println("Enter Salary");

Salary = input.nextLine();

}

void display()

{

System.out.printf("\n%-15s", "STAFFID: ");

System.out.printf("%-15s \n", StaffID);

System.out.printf("%-15s", "NAME: ");

System.out.printf("%-15s \n", Name);

System.out.printf("%-15s", "PHONE:");

System.out.printf("%-15s \n", Phone);

System.out.printf("%-15s", "SALARY:");

System.out.printf("%-15s \n", Salary);

}

}

class Teaching extends Staff

{

String Domain, Publication;

void read_Teaching()

{

super.read(); // call super class read method

System.out.println("Enter Domain");

Domain = input.nextLine();

System.out.println("Enter Publication");

Publication = input.nextLine();

}

void display()

{

super.display(); // call super class display() method

System.out.printf("%-15s", "DOMAIN:");

System.out.printf("%-15s \n", Domain);

System.out.printf("%-15s", "PUBLICATION:");

System.out.printf("%-15s \n", Publication);

}

}

class Technical extends Staff

Design & Analysis of Algorithm Lab Manual 2020

Page 21 Dept of ISE, SJCIT

{

String Skills;

void read_Technical()

{

super.read(); // call super class read method

System.out.println("Enter Skills");

Skills = input.nextLine();

}

void display()

{

super.display(); // call super class display() method

System.out.printf("%-15s", "SKILLS:");

System.out.printf("%-15s \n", Skills);

}

}

class Contract extends Staff

{

String Period;

void read_Contract()

{

super.read(); // call super class read method

System.out.println("Enter Period");

Period = input.nextLine();

}

void display()

{

super.display(); // call super class display() method

System.out.printf("%-15s", "PERIOD:");

System.out.printf("%-15s \n", Period);

}

}

class Staffdetails

{

public static void main(String[] args)

{

Scanner input = new Scanner(System.in);

System.out.println("Enter number of staff details to be created");

Design & Analysis of Algorithm Lab Manual 2020

Page 22 Dept of ISE, SJCIT

int n = input.nextInt();

Teaching steach[] = new Teaching[n];

Technical stech[] = new Technical[n];

Contract scon[] = new Contract[n];

// Read Staff information under 3 categories

for (int i = 0; i < n; i++)

{

System.out.println("Enter Teaching staff information");

steach[i] = new Teaching();

steach[i].read_Teaching();

}

for (int i = 0; i < n; i++)

{

System.out.println("Enter Technical staff information");

stech[i] = new Technical();

stech[i].read_Technical();

}

for (int i = 0; i < n; i++)

{

System.out.println("Enter Contract staff information");

scon[i] = new Contract();

scon[i].read_Contract();

}

// Display Staff Information

System.out.println("\n STAFF DETAILS: \n");

System.out.println("-----TEACHING STAFF DETAILS ----- ");

for (int i = 0; i < n; i++)

{

steach[i].display();

}

System.out.println();

System.out.println("-----TECHNICAL STAFF DETAILS ---- ");

for (int i = 0; i < n; i++)

{

stech[i].display();

}

Design & Analysis of Algorithm Lab Manual 2020

Page 23 Dept of ISE, SJCIT

System.out.println();

System.out.println("-----CONTRACT STAFF DETAILS ---- ");

for (int i = 0; i < n; i++)

{

scon[i].display();

}

input.close();

}

}

Enter number of staff details to be created

1

Enter Teaching staff information

Enter StaffID

111

Enter Name

MAHESH n

Enter Phone

9916130045

Enter Salary

40000

Enter Domain

ise

Enter Publication

ijaret

Enter Technical staff information

Enter StaffID

222

Enter Name

kumar

Enter Phone

984512345

Enter Salary

10000

Enter Skills

c/c++

Enter Contract staff information

Enter StaffID

123

Enter Name

rajesh

Enter Phone

789123545

Enter Salary

8000

Enter Period

1 year

STAFF DETAILS:

-----TEACHING STAFF DETAILS-----

Design & Analysis of Algorithm Lab Manual 2020

Page 24 Dept of ISE, SJCIT

STAFFID: 111

NAME: MAHESH n

PHONE: 9916130045

SALARY: 40000

DOMAIN: ise

PUBLICATION: ijaret

-----TECHNICAL STAFF DETAILS-----

STAFFID: 222

NAME: kumar

PHONE: 984512345

SALARY: 10000

SKILLS: c/c++

-----CONTRACT STAFF DETAILS-----

STAFFID: 123

NAME: rajesh

PHONE: 789123545

SALARY: 8000

PERIOD: 1 year

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 25 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 26 Dept of ISE, SJCIT

EXPERIMENT 2B

PROGRAM STATEMENT
Write a Java class called Customer to store their name and date_of_birth. The date_of_birth

format should be dd/mm/yyyy. Write methods to read customer data as <name, dd/mm/yyyy>

and display as <name,dd,mm,yyyy> using StringTokenizer class considering the delimiter

character as “/”.

CONCEPT
The java.util.StringTokenizer class allows you to break a string into tokens. It is simple way

to break string.The StringTokenizer methods do not distinguish among identifiers, numbers,

and quoted strings, nor do they recognize and skip comments. The set of delimiters (the

characters that separate tokens) may be specified either at creation time or on a per-token

basis.

Constructors of StringTokenizer class
There are 3 constructors defined in the StringTokenizer class.

Constructor Description

StringTokenizer(Strin str)
creates StringTokenizer with
specified string.

StringTokenizer(String str, String delim) creates StringTokenizer with specified string and

delimiter.

StringTokenizer(String str,String

delim,Boolean returnValue)

creates StringTokenizer with
specified string, delimiter and
returnValue. If return value is true,
delimiter characters are considered
to be tokens. If it is false, delimiter
characters serve to separate tokens.

The 6 useful methods of StringTokenizer class are as follows:

Public method Description

boolean hasMoreTokens() checks if there is more tokens available.

String nextToken() returns the next token from the StringTokenizer

object.

String nextToken(String delim) returns the next token based on the delimeter.

boolean hasMoreElements() same as hasMoreTokens() method.

Object nextElement() same as nextToken() but its return type is Object.

Design & Analysis of Algorithm Lab Manual 2020

Page 27 Dept of ISE, SJCIT

int countTokens() returns the total number of tokens.

PROGRAM :

/* 2b. Write a Java class called Customer to store their name and date_of_birth. The date_of_birth

format should be dd/mm/yyyy. Write methods to read customer data as <name, dd/mm/yyyy> and display as

<name, dd, mm, yyyy> using StringTokenizer class considering the delimiter character as “/”.

*/

import java.util.Scanner;

import java.util.StringTokenizer;

public class Customer

{

public static void main(String[] args)

{

String name;

Scanner scan = new Scanner(System.in);

System.out.println("Enter Name and Date_of_Birth in the format

<Name,DD/MM/YYYY>");

name = scan.next();

// create stringTokenizer with delimiter "/"

StringTokenizer st = new StringTokenizer(name, ",/");

// Count the number of tokens

int count = st.countTokens();

// Print one token at a time and induce new delimiter ","

for (int i = 1; i <= count && st.hasMoreTokens(); i++)

{

System.out.print(st.nextToken());

if (i < count)

System.out.print(",");

}

}

}

Design & Analysis of Algorithm Lab Manual 2020

Page 28 Dept of ISE, SJCIT

OUTPUT:-

Enter Name and Date_of_Birth in the format <Name,DD/MM/YYYY>

rajesh,05/04/1984

rajesh,05,04,1984

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 29 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 30 Dept of ISE, SJCIT

EXPERIMENT 3A

PROGRAM STATEMENT
Write a java program to read two integers and b. Compute a/b and print when b is not

zero. Raise an exception when b is equal to zero.

CONCEPT
Exception Handling

1. An exception (or exceptional event) is a problem that arises during the execution of a program.

When an Exception occurs the normal flow of the program is disrupted and the

program/Application terminates abnormally, which is not recommended, therefore, these

exceptions are to be handled.

2. All exception classes are subtypes of the java.lang.Exception class. The exception class is a

subclass of the Throwable class. Other than the exception class there is another subclass called

Error which is derived from the Throwable class.

3. The code which is prone to exceptions is placed in the try block. When an exception occurs,

that exception occurred is handled by catch block associated with it. Every try block should

be immediately followed either by a catch block or finally block.

PROGRAM

/* 3a. Write a Java program to read two integers a and b. Compute a/b and print, when b is

not zero. Raise an exception when b is equal to zero.*/

import java.util.Scanner;

class exception

{

public static void main(String[] args)

{

int a, b, result;

Design & Analysis of Algorithm Lab Manual 2020

Page 31 Dept of ISE, SJCIT

Scanner input = new Scanner(System.in);

System.out.println("Input two integers");

a = input.nextInt();

b = input.nextInt();

try

{

}

result = a / b;

System.out.println("Result = " + result);

catch (ArithmeticException e)

{

System.out.println("Exception caught: Division by zero.");

}

}

}

OUTPUT

RUN1

Input two integers

4

5

Result = 0

RUN2

Input two integers

5

4

Result = 1

RUN3

Input two integers

5

4

Result = 1

Design & Analysis of Algorithm Lab Manual 2020

Page 32 Dept of ISE, SJCIT

Page 33 Dept of ISE, SJCIT

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 34 Dept of ISE, SJCIT

EXPERIMENT 3B

PROGRAM STATEMENT
Write a Java program that implements a multi-thread application that hashtree threads. First

thread generates a random integer for every 1 second; second thread computes the square of

the number and prints; third thread will print the value of cube of the number.

CONCEPT:
Thread is basically a lightweight sub-process, a smallest unit of processing. Java is a multi-threaded

programming language which means we can develop multi-threaded program using Java. A multi-

threaded program contains two or more parts that can run concurrently and each part can handle a

different task at the same time making optimal use of the available resources specially when your

computer has multiple CPUs.

Life Cycle of a Thread

Following are the stages of the life cycle −

New − A new thread begins its life cycle in the new state. It remains in this state until the

program starts the thread. It is also referred to as a born thread.

Runnable − After a newly born thread is started, the thread becomes runnable. A thread in

this state is considered to be executing its task.

 Waiting − Sometimes, a thread transitions to the waiting state while the thread waits for another thread to

perform a task. A thread transitions back to the runnable state only when another thread

signals the waiting thread to continue executing.

 Timed Waiting − A runnable thread can enter the timed waiting state for a specified interval of time.

A

thread in this state transitions back to the runnable state when that time interval expires or

when the event it is waiting for occurs.

Design & Analysis of Algorithm Lab Manual 2020

Page 35 Dept of ISE, SJCIT

Terminated (Dead) − A runnable thread enters the terminated state when it completes its task

or otherwise terminates.

Create a Thread by Extending a Thread Class
The second way to create a thread is to create a new class that extends Thread class using the

following two simple steps. This approach provides more flexibility in handling multiple

threads created using available methods in Thread class.

Step 1: You will need to override run() method available in Thread class. This method

provides an entry point for the thread and you will put your complete business logic inside this

method. Syntax of run() method − public void run()

Step 2 : Once Thread object is created, you can start it by calling start() method, which

executes a call to run() method. Syntax of start() method − void start();

Synchronization :
Inter thread communication is important when you develop an application where two or more threads

exchange some information. At times when more than one thread try to access a shared resource, we

need to ensure that resource will be used by only one thread at a time. The process by which this is

achieved is called synchronization. To do this we can use either Synchronized block or Synchronized

method.

There are three simple methods which makes thread communication possible, listed below – \

These methods have been implemented as final methods in Object, so they are available in all

the classes. All three methods can be called only from within a synchronized context.

Design & Analysis of Algorithm Lab Manual 2020

Sr.No. Method &Description

public void wait()

1

Causes the current thread to wait until another thread invokes the notify().

public void notify()

2 Wakes up a single thread that is waiting on this object's monitor.

public void notifyAll()

3 Wakes up all the threads that called wait() on the same object.

Page 36 Dept of ISE, SJCIT

PROGRAM

MultiThread.java

/* 3b. Write a Java program that implements a multi-thread application that has three threads. First

thread generates a random integer for every 1 second; second thread computes the square of the number and

prints; third thread will print the value of cube of the number */

import java.util.Random;

class SquareThread implements Runnable

{

int x;

SquareThread(int x)

{

this.x = x;

}

public void run()

{

System.out.println("Thread Name:Square Thread and Square of " + x + " is: " + x * x);

}

}

class CubeThread implements Runnable

{

int x;

CubeThread(int x)

{

this.x = x;

}

public void run()

{

System.out.println("Thread Name:Cube Thread and Cube of " + x + " is: " + x * x * x);

}

}

class RandomThread implements Runnable

Design & Analysis of Algorithm Lab Manual 2020

Page 37 Dept of ISE, SJCIT

{

Random r;

Thread t2, t3;

public void run()

{

int num;

r = new Random();

try

{

while (true)

{

num = r.nextInt(10);

System.out.println("Main Thread and Generated Number is " + num);

t2 = new Thread(new SquareThread(num));

t2.start();

t3 = new Thread(new CubeThread(num));

t3.start();

Thread.sleep(1000);

System.out.println(" ");

}

}

catch (Exception ex)

{

System.out.println("Interrupted Exception");

}

}

}

public class MultiThread

{

public static void main(String[] args)

{

RandomThread thread_obj = new RandomThread();

Thread t1 = new Thread(thread_obj);

t1.start();

Design & Analysis of Algorithm Lab Manual 2020

Page 38 Dept of ISE, SJCIT

}

}

OUTPUT

Main Thread and Generated Number is 3

Thread Name:Square Thread and Square of 3 is: 9

Thread Name:Cube Thread and Cube of 3 is: 27

Main Thread and Generated Number is 6

Thread Name:Square Thread and Square of 6 is: 36

Thread Name:Cube Thread and Cube of 6 is: 216

Main Thread and Generated Number is 6

Thread Name:Square Thread and Square of 6 is: 36

Thread Name:Cube Thread and Cube of 6 is: 216

Main Thread and Generated Number is 0

Thread Name:Square Thread and Square of 0 is: 0

Thread Name:Cube Thread and Cube of 0 is: 0

Main Thread and Generated Number is 4

Thread Name:Square Thread and Square of 4 is: 16

Thread Name:Cube Thread and Cube of 4 is: 64

Main Thread and Generated Number is 5

Thread Name:Square Thread and Square of 5 is: 25

Design & Analysis of Algorithm Lab Manual 2020

Page 39 Dept of ISE, SJCIT

Thread Name:Cube Thread and Cube of 5 is: 125

Main Thread and Generated Number is 6

Thread Name:Square Thread and Square of 6 is: 36

Thread Name:Cube Thread and Cube of 6 is: 216

Main Thread and Generated Number is 8

Thread Name:Square Thread and Square of 8 is: 64

Thread Name:Cube Thread and Cube of 8 is: 512

Main Thread and Generated Number is 2

Thread Name:Square Thread and Square of 2 is: 4

Thread Name:Cube Thread and Cube of 2 is: 8

Main Thread and Generated Number is 0

Thread Name:Square Thread and Square of 0 is: 0

Thread Name:Cube Thread and Cube of 0 is: 0

Main Thread and Generated Number is 6

Thread Name:Square Thread and Square of 6 is: 36

Thread Name:Cube Thread and Cube of 6 is: 216

Main Thread and Generated Number is 0

Thread Name:Square Thread and Square of 0 is: 0

Thread Name:Cube Thread and Cube of 0 is: 0

Design & Analysis of Algorithm Lab Manual 2020

Page 40 Dept of ISE, SJCIT

Main Thread and Generated Number is 9

Thread Name:Square Thread and Square of 9 is: 81

Thread Name:Cube Thread and Cube of 9 is: 729

Main Thread and Generated Number is 3

Thread Name:Square Thread and Square of 3 is: 9

Thread Name:Cube Thread and Cube of 3 is: 27

Main Thread and Generated Number is 6

Thread Name:Cube Thread and Cube of 6 is: 216

Thread Name:Square Thread and Square of 6 is: 36

Main Thread and Generated Number is 1

Thread Name:Cube Thread and Cube of 1 is: 1

Thread Name:Square Thread and Square of 1 is: 1

Main Thread and Generated Number is 2

Thread Name:Square Thread and Square of 2 is: 4

Thread Name:Cube Thread and Cube of 2 is: 8

Design & Analysis of Algorithm Lab Manual 2020

Page 41 Dept of ISE, SJCIT

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 42 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 43 Dept of ISE, SJCIT

EXPERIMENT 4

PROGRAM STATEMENT
Sort a given set of n integer elements using Quick Sort method and compute its time

complexity. Run the program for varied values of n > 5000 and record the time taken to sort.

Plot a graph of the time taken versus n on graph sheet. The elements can be read from a file

or can be generated using the random number generator. Demonstrate using Java how the

divide- and-conquer method works along with its time complexity analysis: worst case, average

case and best case.

CONCEPT
Divide and Conquer: In divide and conquer approach, the problem in hand, is divided into

smaller sub-problems and then each problem is solved independently. When we keep on

dividing the subproblems into even smaller sub-problems, we may eventually reach a stage

where no more division is possible. Those "atomic" smallest possible sub-problem (fractions)

are solved. The solution of all sub-problems is finally merged in order to obtain the solution

of an original problem.

Design & Analysis of Algorithm Lab Manual 2020

Page 44 Dept of ISE, SJCIT

Broadly, we can understand divide-and-conquer approach in a three-step process.

Divide/Break: This step involves breaking the problem into smaller sub-problems. Sub-

problems should represent a part of the original problem. This step generally takes a recursive

approach to divide the problem until no sub-problem is further divisible. At this stage, sub-

problems become atomic in nature but still represent some part of the actual problem.

Conquer/Solve: This step receives a lot of smaller sub-problems to be solved. Generally, at

this level, the problems are considered 'solved' on their own.

Merge/Combine: When the smaller sub-problems are solved, this stage recursively combines

them until they formulate a solution of the original problem. This algorithmic approach works

recursively and conquer & merge steps works so close that they appear as one.

The following computer algorithms are based on divide-and-conquer programming

approach .

 Merge Sort

 Quick Sort Method:

Quick Sort divides the array according to the value of elements. It rearranges elements of a given

array A[0..n-1] to achieve its partition, where the elements before position s are smaller

than or equal to A[s] and all the elements after position s are greater than or equal to

A[s].

A[0]…A[s-1] A[s] A[s+1]…A[n-1]

All are <=A[s] all are >=A[s]

Algorithm : QUICKSORT(a[l..r]) //Sorts a subarray by quicksort

//Input: A subarray A[l..r] of A[0..n-1],defined by its left and right indices l and r

//Output: Subarray A[l..r] sorted in nondecreasing order

{

if l<r

{

}

}

s← Partition(A[l..r]) //s is a split position

QUICKSORT(A[l..s-1])

QUICKSORT(A[s+1..r])

Algorithm :

Partition(A[l..r])

//Partition a subarray by using its first element as its pivot

//Input:A subarray A[l..r] of A[0..n-1],defined by its left and right indices l and r (l<r)

//Output:A partition of A[l..r],with the split position returned as this function’s value

{

Design & Analysis of Algorithm Lab Manual 2020

Page 45 Dept of ISE, SJCIT

p ← A[l]

i ← l; j ← r+1 repeat

{

repeat i ← i+1 until A[i] >=p

repeat j ← j-1 until A[j] <=p

swap(A[i],A[j]) } until i>=j

swap(A[i],A[j]) // undo last swap when i>=j

swap(A[l],A[j]) return j

}

Complexity: Cbest (n) =2 Cbest (n/2) +n for n>1

Cbest (1) =0 Cworst (n) (n2)

Cavg (n) ≈ 1.38nlog2n

PROGRAM

/*Program 4.

Sort a given set of n integer elements using Quick Sort method and compute its time

complexity. Run the program for varied values of n > 5000 and record the time taken to

sort. Plot a graph of the time taken versus n on graph sheet. The elements can be read

from a file or can be generated using the random number generator. Demonstrate using

Java how the divide-and-conquer method works along with its time complexity analysis:

worst case, average case and best case.

*/

import java.util.Scanner;

import java.util.Arrays;

import java.util.Random;

public class QuickSortComplexity

{

static final int MAX = 10005;

static int[] a = new int[MAX];

public static void main(String[] args)

{

// for keyboard entry

Scanner input = new Scanner(System.in);

System.out.print("Enter Max array size: ");

int n = input.nextInt();

Random random = new Random();

System.out.println("Enter the array elements: ");

for (int i = 0; i < n; i++)

a[i] = input.nextInt();

Design & Analysis of Algorithm Lab Manual 2020

Page 46 Dept of ISE, SJCIT

// for Random entry

// a[i] = random.nextInt(1000); // generate

// random numbers – uniform distribution

// a = Arrays.copyOf(a, n); // keep only non zero elements

// Arrays.sort(a); // for worst-case time complexity

System.out.println("Input Array:");

for (int i = 0; i < n; i++)

System.out.print(a[i] + " ");

// set start time

long startTime = System.nanoTime();

QuickSortAlgorithm(0, n - 1);

long stopTime = System.nanoTime();

long elapsedTime = stopTime - startTime;

System.out.println("\nSorted Array:");

for (int i = 0; i < n; i++)

System.out.print(a[i] + " ");

System.out.println();

System.out.println("Time Complexity in ms for n=" + n + " is: " + (double) elapsedTime / 1000000);

}

public static void QuickSortAlgorithm(int p, int r)

{

int i, j, temp, pivot;

if (p < r)

{

i = p;

j = r + 1;

pivot = a[p]; // mark first element as pivot

while (true)

{

i++;

while (a[i] < pivot && i < r)

i++;

j--;

while (a[j] > pivot)

j--;

if (i < j)

{

} else

temp = a[i];

a[i] = a[j];

a[j] = temp;

break; // partition is over

Design & Analysis of Algorithm Lab Manual 2020

Page 47 Dept of ISE, SJCIT

}

a[p] = a[j];

a[j] = pivot;

QuickSortAlgorithm(p, j - 1);

QuickSortAlgorithm(j + 1, r);

}

}

}

OUTPUT

Enter Max array size: 10

Enter the array elements:

10

4

6

8

1

3

5

2

9

7

Input Array:

10 4 6 8 1 3 5 2 9 7

Sorted Array:

1 2 3 4 5 6 7 8 9 10

Time Complexity in ms for n=10 is: 0.009056

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 48 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 49 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 50 Dept of ISE, SJCIT

EXPERIMENT 5

PROGRAM STATEMENT
Sort a given set of n integer elements using Merge Sort method and compute its time

complexity. Run the program for varied values of n > 5000, and record the time taken to sort.

Plot a graph of the time taken versus n on graph sheet. The elements can be read from a file

or can be generated using the random number generator. Demonstrate using Java how the

divide- and-conquer method works along with its time complexity analysis: worst case, average

case and best case.

CONCEPT
Merge sort is a perfect example of a successful application of the divide-and-conquer

technique.

 Split array A[1..n] in two and make copies of each half in arrays B[1.. n/2] and C[1..

n/2]

 Sort arrays B and C

 Merge sorted arrays B and C into array A as follows:

a) Repeat the following until no elements remain in one of the arrays:
(i) compare the first elements in the remaining unprocessed portions of the

arrays
(ii) copy the smaller of the two into A, while incrementing the index indicating the

unprocessed portion of that array

b) Once all elements in one of the arrays are processed, copy the remaining

unprocessed elements from the other array into A.

Algorithm: MergeSort (A [0...n-1])

//This algorithm sorts array A [0...n-1] by recursive mergesort.

//Input: An array A [0...n-1] of orderable elements.

//Output: Array A [0...n-1] sorted in non-decreasing order

{
if n>1

{

}

}

Copy A [0…└n/2┘-1] to B [0…└n/2┘-1]

Copy A [└n/2┘┐… n-1] to C [0…┌n/2┐-1]

MergeSort (B [0…└n/2┘-1])

MergeSort (C [0…┌n/2┐-1]) Merge (B, C,A)

Algorithm: Merge (B [0…p-1], C [0...q-1], A [0...p+q-1])

//Merges two sorted arrays into one sorted array.

//Input: Arrays B [0…p-1] and C [0...q-1] both sorted.

//Output: Sorted array A [0...p+q-1] of the elements of B and C.

{

Design & Analysis of Algorithm Lab Manual 2020

Page 51 Dept of ISE, SJCIT

i ← 0; j←0; k←0

while i<p and j<q do

{

if B[i] <= C[j]

A[k] ← B[i]; i← i+1

else

A[k] ← C[j];

j← j+1 k ← k+1;

}

if i=p

copy C [j…q-1] to A[k…p+q-1]

else

copy B [i…p-1] to A[k…p+q-1]

}

Complexity:

All cases have same efficiency: Θ(n log n)

Number of comparisons is close to theoretical minimum for comparison-based sorting: log n

! ≈ n lg n - 1.44 n

PROGRAM:
/* Program 5

Sort a given set of n integer elements using Merge Sort method and compute its time

complexity. Run the program for varied values of n > 5000, and record the time taken to

sort. Plot a graph of the time taken versus n on graph sheet. The elements can be read

from a file or can be generated using the random number generator. Demonstrate using

Java how the divide-and-conquer method works along with its time complexity analysis:

worst case, average case and best case.

*/

import java.util.Random;
import java.util.Scanner;

public class MergeSort2

{

static final int MAX = 10005;

static int[] a = new int[MAX];

public static void main(String[] args)

{

Scanner input = new Scanner(System.in);

System.out.print("Enter Max array size: ");

int n = input.nextInt();

Random random = new Random();

//20

System.out.println("Enter the array elements: ");

Design & Analysis of Algorithm Lab Manual 2020

Page 52 Dept of ISE, SJCIT

for (int i = 0; i < n; i++)

// a[i] = input.nextInt(); // for keyboard entry

a[i] = random.nextInt(1000); // generate random numbers –

// uniform distribution

for (int i = 0; i < n; i++)

System.out.println(a[i] + " "); // display unsorted numbers(input values)

long startTime = System.nanoTime();

MergeSortAlgorithm(0, n - 1);

long stopTime = System.nanoTime();

long elapsedTime = stopTime - startTime;

System.out.println("Time Complexity (ms) for n = " +

n + " is : " + (double) elapsedTime / 1000000);

System.out.println("Sorted Array (Merge Sort):");

for (int i = 0; i < n; i++)

System.out.print(a[i] + " ");

input.close();

}

public static void MergeSortAlgorithm(int low, int high)

{

int mid;

if (low < high)

{

mid = (low + high) / 2;

MergeSortAlgorithm(low, mid);

MergeSortAlgorithm(mid + 1, high);

Merge(low, mid, high);

}

}

public static void Merge(int low, int mid, int high)

{

int[] b = new int[MAX];

int i, h, j, k;

h = i = low;

j = mid + 1;

while ((h <= mid) && (j <= high))

if (a[h] < a[j])

b[i++] = a[h++];

else

b[i++] = a[j++];

if (h > mid)

for (k = j; k <= high; k++)

b[i++] = a[k];

else

Design & Analysis of Algorithm Lab Manual 2020

Page 53 Dept of ISE, SJCIT

for (k = h; k <= mid; k++)

b[i++] = a[k];

for (k = low; k <= high; k++)

a[k] = b[k];

}

}

OUTPUT

Enter Max array size: 20

208

536

750

299

530

689

73

819

528

815

49

7

413

209

423

861

682

744

885

24

Time Complexity (ms) for n = 20 is : 0.304288

Sorted Array (Merge Sort):
7 24 49 73 208 209 299 413 423 528 530 536 682 689 744 750 815 819 861 885

Design & Analysis of Algorithm Lab Manual 2020

Page 54 Dept of ISE, SJCIT

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 55 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 56 Dept of ISE, SJCIT

EXPERIMENT 6A

PROGRAM STATEMENT
Implement in Java, the 0/1 Knapsack problem using Dynamic Programming method

CONCEPT
Dynamic-Programming Solution to the 0-1 Knapsack Problem: Dynamic programming is used

where we have problems, which can be divided into similar sub-problems, so that their results

can be re-used. Mostly, these algorithms are used for optimization. Before solving the in-hand

sub-problem, dynamic algorithm will try to examine the results of the previously solved sub-

problems. The solutions of sub-problems are combined in order to achieve the

best solution.wi.In the knapsack problem we are given a set of n items, where each item i is

specified by a size and a value vi. We are also given a size bound W (the size of our knapsack).

The goal is to find the subset of items of maximum total value such that sum of their sizes is

at most W (they all fit into the knapsack).Now, instead of being able to take a certain weight

of an item, you can only either take the item or not take the item.

Algorithm:

WiVi(n items, W weight of sack)

//Input: n and W – all integers

//Output: V(n,W)

//Initialization of first column and first row elements

Repeat for i = 0 to n

set V(i,0) = 0

• Repeat for j = 0 to W

Set V(0,j) = 0

//complete remaining entries row by row

• Repeat for i = 1 to n

repeat for j = 1 to W
w

w v
i i i

if (<= j) V(i,j)) = max{ V(i-1,j), V(i-1,j- Wi) + Vi }

if (> j) V(i,j) = V(i-1,j)

Design & Analysis of Algorithm Lab Manual 2020

Page 57 Dept of ISE, SJCIT

Print V(n,W)

PROGRAM

/* Knapsack DP */

import java.util.Scanner;

public class KnapsackDP

{

static final int MAX = 20; // max. no. of objects

static int w[]; // weights 0 to n-1

static int p[]; // profits 0 to n-1

static int n; // no. of objects

static int M; // capacity of Knapsack

static int V[][]; // DP solution process - table

static int Keep[][]; // to get objects in optimal solution

public static void main(String args[])

{

w = new int[MAX];

p = new int[MAX];

V = new int [MAX][MAX];

Keep = new int[MAX][MAX];

int optsoln;

ReadObjects();

for (int i = 0; i <= M; i++)

V[0][i] = 0;

for (int i = 0; i <= n; i++)

V[i][0] = 0;

optsoln = Knapsack();

System.out.println("Optimal solution = " + optsoln);

}

static int Knapsack()

{

int r; // remaining Knapsack capacity

for (int i = 1; i <= n; i++)

for (int j = 0; j <= M; j++)

if ((w[i] <= j) && (p[i] + V[i - 1][j - w[i]] > V[i - 1][j]))

{

V[i][j] = p[i] + V[i - 1][j - w[i]];

Keep[i][j] = 1;

}

Design & Analysis of Algorithm Lab Manual 2020

Page 58 Dept of ISE, SJCIT

else

{

}

V[i][j] = V[i - 1][j];

Keep[i][j] = 0;

// Find the objects included in the Knapsack

r = M;

System.out.println("Items = ");

for (int i = n; i > 0; i--) // start from Keep[n,M]

if (Keep[i][r] == 1)

{

System.out.println(i + " ");

r = r - w[i];

}

System.out.println();

return V[n][M];

}

static void ReadObjects()

{

Scanner scanner = new Scanner(System.in);

System.out.println("Knapsack Problem - Dynamic Programming Solution: ");

System.out.println("Enter the max capacity of knapsack: ");

M = scanner.nextInt();

System.out.println("Enter number of objects: ");

n = scanner.nextInt();

System.out.println("Enter Weights: ");

for (int i = 1; i <= n; i++)

w[i] = scanner.nextInt();

System.out.println("Enter Profits: ");

for (int i = 1; i <= n; i++)

p[i] = scanner.nextInt();

scanner.close();

}

}

OUTPUT

Knapsack Problem - Dynamic Programming Solution:

Enter the max capacity of knapsack:

15

Enter number of objects:

4

Enter Weights:

2

5

Design & Analysis of Algorithm Lab Manual 2020

Page 59 Dept of ISE, SJCIT

Page 60 Dept of ISE, SJCIT

7

3

Enter Profits:

23

78

34

12

Items =

3

2

1

Optimal solution = 135

NOTES AND SPACE AREA

Design & Analysis of Algorithm Lab Manual 2020

Page 61 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 62 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 63 Dept of ISE, SJCIT

EXPERIMENT 6B

PROGRAM STATEMENT
Implement in Java, the Fractional Knapsack problem using Greedy method

CONCEPT
Greedy Solution to the Fractional Knapsack Problem
The basic idea of greedy approach is to calculate the ratio value/weight for each item and sort the item

on basis of this ratio. Then take the item with highest ratio and add them until we can’t add the next

item as whole and at the end add the next item as much as we can. This will always be optimal solution

of this problem.

Algorithm:

 Assume knapsack holds weight W and items have value vi and weight wi

 Rank items by value/weight ratio: vi / wi Thus: vi / wi ≥ vj / wj, for all i ≤ j

 Consider items in order of decreasing ratio

 Take as much of each item as possible

PROGRAM

/* Knapsack Greedy */

import java.util.Scanner;

class KObject

{ // Knapsack object details

float w;

float p;

float r;

}

public class KnapsackGreedy2

{

static final int MAX = 20; // max. no. of objects

static int n; // no. of objects

static float M; // capacity of Knapsack

public static void main(String args[])

{

Scanner scanner = new Scanner(System.in);

System.out.println("Enter number of objects: ");

n = scanner.nextInt();

KObject[] obj = new KObject[n];

for(int i = 0; i<n;i++)

obj[i] = new KObject();// allocate memory for members

ReadObjects(obj);

Design & Analysis of Algorithm Lab Manual 2020

Page 64 Dept of ISE, SJCIT

Knapsack(obj);

scanner.close();

}

static void ReadObjects(KObject obj[])

{

KObject temp = new KObject();

Scanner scanner = new Scanner(System.in);

System.out.println("Enter the max capacity of knapsack: ");

M = scanner.nextFloat();

System.out.println("Enter Weights: ");

for (int i = 0; i < n; i++)

obj[i].w = scanner.nextFloat();

System.out.println("Enter Profits: ");

for (int i = 0; i < n; i++)

obj[i].p = scanner.nextFloat();

for (int i = 0; i < n; i++)

obj[i].r = obj[i].p / obj[i].w;

// sort objects in descending order, based on p/w ratio

for(int i = 0; i<n-1; i++)

for(int j=0; j<n-1-i; j++)

if(obj[j].r < obj[j+1].r)

{

}

scanner.close();

}

temp = obj[j];

obj[j] = obj[j+1];

obj[j+1] = temp;

static void Knapsack(KObject kobj[])

{

float x[] = new float[MAX];

float totalprofit;

int i;

float U; // U place holder for M

U = M;

totalprofit = 0;

for (i = 0; i < n; i++)

x[i] = 0;

for (i = 0; i < n; i++)
{

Design & Analysis of Algorithm Lab Manual 2020

Page 65 Dept of ISE, SJCIT

if (kobj[i].w > U)

break;

else

{

}

}

x[i] = 1;

totalprofit = totalprofit + kobj[i].p;

U = U - kobj[i].w;

System.out.println("i = " + i);

if (i < n)

x[i] = U / kobj[i].w;

totalprofit = totalprofit + (x[i] * kobj[i].p);

System.out.println("The Solution vector, x[]: ");

for (i = 0; i < n; i++)

System.out.print(x[i] + " ");

System.out.println("\nTotal profit is = " + totalprofit);

}

}

/*Enter number of objects:

4

Enter the max capacity of knapsack:

20

Enter Weights:

5

9

12

3

Enter Profits:

45

78

45

65

i = 3

The Solution vector, x[]:

1.0 1.0 1.0 0.25

Total profit is = 199.25

*/RUN 2

Enter number of objects:

5

Enter the max capacity of knapsack:

25

Enter Weights:

12

Design & Analysis of Algorithm Lab Manual 2020

Page 66 Dept of ISE, SJCIT

10

9

6

14

Enter Profits:

45

67

12

78

54

i = 2

The Solution vector, x[]:

1.0 1.0 0.64285713 0.0 0.0

Total profit is = 179.7143

NOTES AND SPACE AREA

Design & Analysis of Algorithm Lab Manual 2020

Page 67 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 68 Dept of ISE, SJCIT

EXPERIMENT 7

PROGRAM STATEMENT
From a given vertex in weighted connected graph, find shortest path to other vertices using

Dijkstras algorithm. Write the program in java.

CONCEPT
It is a greedy algorithm which finds the shortest path from the source vertex to all other vertices of the

graph.

Steps

1. Input a cost matrix for graph. Read the source vertex and n from user

2. Create the array d [1…n] which stores the distance from source vertex to all other

vertices of graph. Initialize distance to source vertex as 0(i.e. d [source] =0) and

remaining vertices as 999.

3. Create the array visited [1…n] which keeps track of all the visited nodes. Visit the

source vertex and initialize visited [source] =1.

4. For all adjacent vertices[vi,vi+1,…] for source vertex calculate distance using formula

d[vi]=min(d[vi], d[source]+ cost[source][v1]). Update the array d [1…n].

5. For all adjacent vertices find vertex vi which has minimum distance from source

vertex.

6. Initialize source = vi. Repeat the steps 4, 5 until there all some vertices which are

unvisited.

7. Stop

Example

Design & Analysis of Algorithm Lab Manual 2020

Page 69 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 67 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 68 Dept of ISE, SJCIT

Hence distance from A to A = 0

Hence distance from A to B = 3

Hence distance from A to C = 7

Hence distance from A to D = 1

Hence distance from A to E = 2

PROGRAM

/* Dijikstra's */

import java.util.*;

public class DijkstrasClass

{

final static int MAX = 20;

final static int infinity = 9999;

static int n; // No. of vertices of G

static int a[][]; // Cost matrix

static Scanner scan = new Scanner(System.in);

public static void main(String[] args)

{

ReadMatrix();

int s = 0; // starting vertex

System.out.println("Enter starting vertex: ");

s = scan.nextInt();

Dijkstras(s); // find shortest path

}

static void ReadMatrix()

{

a = new int[MAX][MAX];

System.out.println("Enter the number of vertices:");

n = scan.nextInt();

System.out.println("Enter the cost adjacency matrix:");

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

a[i][j] = scan.nextInt();

}

static void Dijkstras(int s)

{

int S[] = new int[MAX];

Page 69 Dept of ISE, SJCIT

int d[] = new int[MAX];

int u, v;

int i;

for (i = 1; i <= n; i++)

{

S[i] = 0;

d[i] = a[s][i];

}

S[s] = 1;

d[s] = 1;

i = 2;

while (i <= n)

{

u = Extract_Min(S, d);

S[u] = 1;

i++;

for (v = 1; v <= n; v++)

{

if (((d[u] + a[u][v] < d[v]) && (S[v] == 0)))

d[v] = d[u] + a[u][v];

}

}

for (i = 1; i <= n; i++)

if (i != s)

System.out.println(i + ":" + d[i]);

}

static int Extract_Min(int S[], int d[])

{

int i, j = 1, min;

min = infinity;

for (i = 1; i <= n; i++)

{

if ((d[i] < min) && (S[i] == 0))

{

min = d[i];

j = i;

}

}

return (j);

}

}

Design & Analysis of Algorithm Lab Manual 2020

Page 70 Dept of ISE, SJCIT

OUTPUT

Enter the number of vertices:

4

Enter the cost adjacency matrix:

999 1 6 4

999 999 999 2

999 3 999 999

999 999 1 999

Enter starting vertex:

1

2:1

3:4

4:3

NOTES AND OUPUT AREA

Design & Analysis of Algorithm Lab Manual 2020

Page 71 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 72 Dept of ISE, SJCIT

EXPERIMENT 8

PROGRAM STATEMENT
Find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal’s

algorithm. Implement the program in Java. Use Union-Find algorithm in your program.

CONCEPT

A spanning tree is a subset of Graph G, which has all the vertices covered with minimum

possible number of edges. Hence, a spanning tree does not have cycles and it cannot be

disconnected.

By this definition, we can draw a conclusion that every connected and undirected Graph G has at least one

spanning tree. A disconnected graph does not have any spanning tree, as it cannot be spanned to all its

vertices.

We found three spanning trees off one complete graph. A complete undirected graph

can have maximum nn-2 number of spanning trees, where n is the number of nodes. In the above

addressed example, 33−2 = 3 spanning trees are possible.

Design & Analysis of Algorithm Lab Manual 2020

Page 73 Dept of ISE, SJCIT

General Properties of Spanning Tree

We now understand that one graph can have more than one spanning tree. Following are a

few properties of the spanning tree connected to graph G −

 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the

spanning tree is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning

tree is maximally acyclic.

Minimum Spanning Tree
Given a connected and undirected graph, a spanning tree of that graph is a subgraph that is a tree

and connects all the vertices together. A single graph can have many different spanning trees. A

minimum spanning tree (MST) or minimum weight spanning tree for a weighted, connected and

undirected graph is a spanning tree with weight less than or equal to the weight of every other

spanning tree. The weight of a spanning tree is the sum of weights given to each edge of the

spanning tree.

Kruskal's algorithm to find the minimum cost spanning tree uses the greedy approach. This

algorithm treats the graph as a forest and every node it has as an individual tree. A tree connects

to another only and only if, it has the least cost among all available options and does not violate

MST properties.

To understand Kruskal's algorithm let us consider the following example −

Design & Analysis of Algorithm Lab Manual 2020

Page 74 Dept of ISE, SJCIT

Step 1 - Remove all loops and Parallel Edges

Remove all loops and parallel edges from the given graph.

In case of parallel edges, keep the one which has the least cost associated and remove all

others.

Step 2 - Arrange all edges in their increasing order of weight
The next step is to create a set of edges and weight, and arrange them in an ascending order of weightage

(cost).

Step 3 - Add the edge which has the least weightage
Now we start adding edges to the graph beginning from the one which has the least weight.

Throughout, we shall keep checking that the spanning properties remain intact. In case, by adding

one edge, the spanning tree property does not hold then we shall consider not to include the edge

in the graph.

Design & Analysis of Algorithm Lab Manual 2020

Page 75 Dept of ISE, SJCIT

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does not

violate spanning tree properties, so we continue to our next edge selection.

Next cost is 3, and associated edges are A,C and C,D. We add them again −

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. −

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

Design & Analysis of Algorithm Lab Manual 2020

Page 76 Dept of ISE, SJCIT

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on.

Now we are left with only one node to be added. Between the two least cost edges available 7

and 8, we shall add the edge with cost 7.

By adding edge S,A we have included all the nodes of the graph and we now have minimum cost spanning

tree.

PROGRAM

/* 8. Kruskals */

import java.util.Scanner;

public class KruskalsClass

{

final static int MAX = 20;

static int n; // No. of vertices of G

static int cost[][]; // Cost matrix

static Scanner scan = new Scanner(System.in);

public static void main(String[] args)

Design & Analysis of Algorithm Lab Manual 2020

Page 77 Dept of ISE, SJCIT

{

ReadMatrix();

Kruskals();

}

static void ReadMatrix()

{

int i, j;

cost = new int[MAX][MAX];

System.out.println("Implementation of Kruskal's algorithm");

System.out.println("Enter the no. of vertices");

n = scan.nextInt();

System.out.println("Enter the cost adjacency matrix");

for (i = 1; i <= n; i++)

{

for (j = 1; j <= n; j++)

{

cost[i][j] = scan.nextInt();

if (cost[i][j] == 0)

cost[i][j] = 999;

}

}

}

static void Kruskals()

{

int a = 0, b = 0, u = 0, v = 0, i, j, ne = 1, min, mincost = 0;

System.out.println("The edges of Minimum Cost Spanning Tree are");

while (ne < n)

{

for (i = 1, min = 999; i <= n; i++)

{

for (j = 1; j <= n; j++)

{

if (cost[i][j] < min)

{

min = cost[i][j];

a = u = i;

b = v = j;

}

}

Design & Analysis of Algorithm Lab Manual 2020

Page 78 Dept of ISE, SJCIT

}

u = find(u);

v = find(v);

if (u != v)

{

uni(u, v);

System.out.println(ne++ + "edge (" + a + "," + b + ") =" + min);

mincost += min;

}

cost[a][b] = cost[b][a] = 999;

}

System.out.println("Minimum cost :" + mincost);

}

static int find(int i)

{

int parent[] = new int[9];

while (parent[i] == 1)

i = parent[i];

return i;

}

static void uni(int i, int j)

{

int parent[] = new int[9];

parent[j] = i;

}

}

OUTPUT

Implementation of Kruskal's algorithm

Enter the no. of vertices

4

Enter the cost adjacency matrix

999 1 6 4

999 999 999 2

999 3 999 999

999 999 1 999

The edges of Minimum Cost Spanning Tree are

1edge (1,2) =1

2edge (4,3) =1

3edge (2,4) =2

Minimum cost :4

Design & Analysis of Algorithm Lab Manual 2020

Page 79 Dept of ISE, SJCIT

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 80 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 81 Dept of ISE, SJCIT

EXPERIMENT 9

PROGRAM STATEMENT
Find Minimum Cost Spanning Tree of a given connected undirected graph using Prim’s
algorithm.

CONCEPT
Prim's algorithm to find minimum cost spanning tree uses the greedy approach. Prim's

algorithm shares a similarity with the shortest path first algorithms.

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a single tree

and keeps on adding new nodes to the spanning tree from the given graph.

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, we

shall use the same example −

Step 1 - Remove all loops and parallel edges

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep the

one which has the least cost associated and remove all others.

Design & Analysis of Algorithm Lab Manual 2020

Page 82 Dept of ISE, SJCIT

Step 2 - Choose any arbitrary node as root node

In this case, we choose S node as the root node of Prim's spanning tree. This node is arbitrarily

chosen, so any node can be the root node. One may wonder why any video can be a root node.

So the answer is, in the spanning tree all the nodes of a graph are included and because it is

connected then there must be at least one edge, which will join it to the rest of the tree.

Step 3 - Check outgoing edges and select the one with less cost

After choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8,

respectively. We choose the edge S,A as it is lesser than the other.

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We

select the one which has the lowest cost and include it in the tree.

After this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check all

the edges again. However, we will choose only the least cost edge. In this case, C-3-D is the

new edge, which is less than other edges' cost 8, 6, 4, etc.

Design & Analysis of Algorithm Lab Manual 2020

Page 83 Dept of ISE, SJCIT

After adding node D to the spanning tree, we now have two edges going out of it having the

same cost, i.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again yield

edge 2 as the least cost. Hence, we are showing a spanning tree with both edges included.

PROGRAM

/* 9. Prim's */

import java.util.Scanner;

public class PrimsClass

{

final static int MAX = 20;

static int n; // No. of vertices of G

static int cost[][]; // Cost matrix

static Scanner scan = new Scanner(System.in);

public static void main(String[] args)

{

ReadMatrix();

Prims();

}

static void ReadMatrix()

{

Design & Analysis of Algorithm Lab Manual 2020

Page 84 Dept of ISE, SJCIT

int i, j;

cost = new int[MAX][MAX];

System.out.println("\n Enter the number of nodes:");

n = scan.nextInt();

System.out.println("\n Enter the adjacency matrix:\n");

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

{

cost[i][j] = scan.nextInt();

if (cost[i][j] == 0)

cost[i][j] = 999;

}

}

static void Prims()

{

int visited[] = new int[10];

int ne = 1, i, j, min, a = 0, b = 0, u = 0, v = 0;

int mincost = 0;

visited[1] = 1;

while (ne < n)

{

for (i = 1, min = 999; i <= n; i++)

for (j = 1; j <= n; j++)

if (cost[i][j] < min)

if (visited[i] != 0)

{

min = cost[i][j];

a = u = i;

b = v = j;

}

if (visited[u] == 0 || visited[v] == 0)

{

min);

System.out.println("Edge" + ne++ + ":(" + a + "," + b + ")" + "cost:" +

mincost += min;

visited[b] = 1;

}

cost[a][b] = cost[b][a] = 999;

}

System.out.println("\n Minimun cost" + mincost);

Design & Analysis of Algorithm Lab Manual 2020

Page 85 Dept of ISE, SJCIT

}

}

OUTPUT

Enter the number of nodes:

4

Enter the adjacency matrix:

999 7 2 4

999 999 999 5

999 4 999 999

999 999 1 999

Edge1:(1,3)cost:2

Edge2:(1,4)cost:4

Edge3:(3,2)cost:4

Minimun cost10

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 86 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 87 Dept of ISE, SJCIT

EXPERIMENT 10A

PROGRAM STATEMENT
Implement All-Pairs Shortest Paths problem using Floyd's algorithm.

CONCEPT
The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem.

The problem is to find shortest distances between every pair of vertices in a given edge

weighted directed Graph. Following Algorithm is used to find shortest path:

given: w[i][j] is the wieghted matrix that contains weights k is the iteration variable for

intermidiate vertices Following is the algorithm

function floyd for i=1 to n for j=1 to n

w[i][j]=infinity//if entered w[i][j] == 0 for each edge (i,j) in E

dmatrix[i][i] = amatrix[i][j];//copy the entered weighted matrix to distance matrix //calculate

distance matrix
for k=1 to n for i=1 to n for j=1 to n

if (dmatrix[i][k] + dmatrix[k][j]< dmatrix[i][j])

dmatrix[i][j] = dmatrix[i][k] + dmatrix[k][j];

PROGRAM
import java.util.Scanner;

public class FloydsClass

{

static final int MAX = 20; // max. size of cost matrix

static int a[][]; // cost matrix

static int n; // actual matrix size

public static void main(String args[])

{

a = new int[MAX][MAX];

ReadMatrix();

Floyds(); // find all pairs shortest path

PrintMatrix();

}

static void ReadMatrix()

{

System.out.println("Enter the number of vertices\n");

Scanner scanner = new Scanner(System.in);

n = scanner.nextInt();

System.out.println("Enter the Cost Matrix (999 for infinity) \n");

for (int i = 1; i <= n; i++)

Design & Analysis of Algorithm Lab Manual 2020

Page 88 Dept of ISE, SJCIT

{

for (int j = 1; j <= n; j++)

{

a[i][j] = scanner.nextInt();

}

}

scanner.close();

}

static void Floyds()

{

for (int k = 1; k <= n; k++)

{

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

if ((a[i][k] + a[k][j]) < a[i][j])

a[i][j] = a[i][k] + a[k][j];

}

}

static void PrintMatrix()

{

System.out.println("The All Pair Shortest Path Matrix is:\n");

for(int i=1; i<=n; i++)

{

for(int j=1; j<=n; j++)

System.out.print(a[i][j] + "\t");

System.out.println("\n");

}

}

}

OUTPUT

Enter the number of vertices

4

Enter the Cost Matrix (999 for infinity)

999 1 4 6

999 999 7 4

2 999 999 3

999 999 999 999

The All Pair Shortest Path Matrix is:

6 1 4 5

Design & Analysis of Algorithm Lab Manual 2020

Page 89 Dept of ISE, SJCIT

9 10 7 4

2 3 6 3

999 999 999 999

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 90 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 91 Dept of ISE, SJCIT

EXPERIMENT 10B

PROGRAM STATEMENT

Write a Java program to implement 4 Salesman Problem using Dynamic programming

CONCEPT

Given a set of cities and distance between every pair of cities, the problem is to find the

shortest possible route that visits every city exactly once and returns to the starting point. Note the

difference between Hamiltonian Cycle and TSP. The Hamiltonian cycle problem is to find if there

exist a tour that visits every city exactly once. Here we know that Hamiltonian Tour exists (because

the graph is complete) and in fact many such tours exist, the problem is to find a minimum weight

Hamiltonian Cycle.

For example, consider the above graph. A TSP tour in the graph is 1-2-4-3-1. The cost of the

tour is 10+25+30+15 which is 80.

PROGRAM

/* 10b. TSP - DP */

import java.util.Scanner;

public class TravSalesPerson

{

static int MAX = 100;

static final int infinity = 999;

public static void main(String args[])

Design & Analysis of Algorithm Lab Manual 2020

http://www.geeksforgeeks.org/backtracking-set-7-hamiltonian-cycle/

Page 92 Dept of ISE, SJCIT

{

int cost = infinity;

int c[][] = new int[MAX][MAX]; // cost matrix

int tour[] = new int[MAX]; // optimal tour

int n; // max. cities

System.out.println("Travelling Salesman Problem using Dynamic Programming\n");

System.out.println("Enter number of cities: ");

Scanner scanner = new Scanner(System.in);

n = scanner.nextInt();

System.out.println("Enter Cost matrix:\n");

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

{

c[i][j] = scanner.nextInt();

if (c[i][j] == 0)

c[i][j] = 999;

}

for (int i = 0; i < n; i++)

tour[i] = i;

cost = tspdp(c, tour, 0, n);

// print tour cost and tour

System.out.println("Minimum Tour Cost: " + cost);

System.out.println("\nTour:");

for (int i = 0; i < n; i++)

{

System.out.print(tour[i] + " -> ");

}

System.out.println(tour[0] + "\n");

scanner.close();

}

static int tspdp(int c[][], int tour[], int start, int n)

{

int i, j, k;

int temp[] = new int[MAX];

int mintour[] = new int[MAX];

int mincost;

int cost;

if (start == n - 2)

return c[tour[n - 2]][tour[n - 1]] + c[tour[n - 1]][0];

mincost = infinity;

for (i = start + 1; i < n; i++)

{

for (j = 0; j < n; j++)

temp[j] = tour[j];

temp[start + 1] = tour[i];

Design & Analysis of Algorithm Lab Manual 2020

Page 93 Dept of ISE, SJCIT

temp[i] = tour[start + 1];

if (c[tour[start]][tour[i]] + (cost = tspdp(c, temp, start + 1, n)) < mincost) {

mincost = c[tour[start]][tour[i]] + cost;

for (k = 0; k < n; k++)

mintour[k] = temp[k];

}

}

for (i = 0; i < n; i++)

tour[i] = mintour[i];

return mincost;

}

}

OUTPUT

Travelling Salesman Problem using Dynamic Programming

Enter number of cities:

4

Enter Cost matrix:

0 1 2 4

1 0 999 1

2 999 0 1

4 1 1 0

Minimum Tour Cost: 5

Tour:

0 -> 1 -> 3 -> 2 -> 0

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 94 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 95 Dept of ISE, SJCIT

EXPERIMENT 11

PROGRAM STATEMENT
Find a subset of a given set S = {sl,s2,. ... ,sn} of n positive integers whose sum is equal to a given

positive integer d. For example, if S= {1, 2, 5, 6, 8} and d = 9 there are two

solutions{1,2,6}and{1,8}.A suitable message is to be displayed if the given problem instance doesn't

have a solution.

CONCEPT

Subset-Sum Problem is to find a subset of a given set S= {s1, s2… sn} of n positive integers

whose sum is equal to a given positive integer d. It is assumed that the set’s elements are

sorted in increasing order. The state-space tree can then be constructed as a binary tree and

applying backtracking algorithm, the solutions could be obtained. Some instances of the

problem may have no solutions.

PROGRAM

import java.util.Scanner;

public class SumOfsubset

{

final static int MAX = 10;

static int n;

static int S[];

static int soln[];

static int d;

public static void main(String args[])

{

S = new int[MAX];

soln = new int[MAX];

int sum = 0;

Scanner scanner = new Scanner(System.in);

System.out.println("Enter number of elements: ");

n = scanner.nextInt();

System.out.println("Enter the set in increasing order: ");

for (int i = 1; i <= n; i++)

S[i] = scanner.nextInt();

System.out.println("Enter the max. subset value(d): ");

d = scanner.nextInt();

for (int i = 1; i <= n; i++)

sum = sum + S[i];

if (sum < d || S[1] > d)

System.out.println("No Subset possible");

Design & Analysis of Algorithm Lab Manual 2020

Page 96 Dept of ISE, SJCIT

else

SumofSub(0, 0, sum);

scanner.close();

}

static void SumofSub(int i, int weight, int total)

{

if (promising(i, weight, total) == true)

if (weight == d) {

for (int j = 1; j <= i; j++)

{

if (soln[j] == 1)

System.out.print(S[j] + " ");

}

}

else

{

}

}

System.out.println();

soln[i + 1] = 1;

SumofSub(i + 1, weight + S[i + 1], total - S[i + 1]);

soln[i + 1] = 0;

SumofSub(i + 1, weight, total - S[i + 1]);

static boolean promising(int i, int weight, int total)

{

return ((weight + total >= d) && (weight == d || weight + S[i + 1] <= d));

}

}

OUTPUT

Enter number of elements:

4

Enter the set in increasing order:

4

6

9

12

Enter the max. subset value(d):

13

4 9

Design & Analysis of Algorithm Lab Manual 2020

Page 97 Dept of ISE, SJCIT

Page 98 Dept of ISE, SJCIT

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 99 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 100 Dept of ISE, SJCIT

EXPERIMENT 12

PROGRAM STATEMENT
Design and implement in java to find all Hamiltonian Cycles in a connected undirected graph

G with n vertices using backtracking principle.

CONCEPT
A Hamiltonian cycle, Hamiltonian circuit is a cycle that visits each vertex exactly once

(except for the vertex that is both the start and end, which is visited twice). A graph that contains

a Hamiltonian cycle is called a Hamiltonian graph.

Following is one way of checking whether a graph contains a Hamiltonian Cycle or not.
A Hamiltonian Path in a graph having N vertices is nothing but a permutation of the vertices of the

graph [v1, v2,

v3, vN-1, v N], such that there is an edge between vi and vi+1 where 1 ≤ i ≤ N-1. So it can be

checked for all permutations of the vertices whether it represents a Hamiltonian Cycle or not.

INPUT

PROGRAM
/* 12. Hamiltonian cycle */

import java.util.Scanner;

public class Hamiltonian

{

boolean found = false;

int G[][];// = new int[n + 1][n + 1];

int x[];// = new int[n + 1];

int n;

public static void main(String args[])

{

Hamiltonian hamiltonian = new Hamiltonian();

hamiltonian.getData();

Design & Analysis of Algorithm Lab Manual 2020

OUTPUT

https://en.wikipedia.org/wiki/Cycle_(graph_theory)

Page 101 Dept of ISE, SJCIT

System.out.println("\nSolution:");

hamiltonian.HamiltonianMethod(2);

hamiltonian.printNoSlnPossible();

}

public void printNoSlnPossible()

{

if (found == false)

System.out.println("No Solution possible!");

}

public void getData()

{

Scanner scanner = new Scanner(System.in);

System.out.println("\t\t\t\tHamiltonian Cycle");

System.out.print("\nEnter the number of the vertices: ");

// int n;

n = scanner.nextInt();

G = new int[n + 1][n + 1];

x = new int[n + 1];

System.out.print("\nIf edge between the following vertices enter 1 else 0:\n");

for (int i = 1; i <= n; i++)

for (int j = 1; j <= n; j++)

{

if ((i != j) && (i < j))

{

System.out.print(i + " and " + j + ": ");

G[j][i] = G[i][j] = scanner.nextInt();

}

if (i == j)

G[i][j] = 0;

}

for (int i = 1; i <= n; i++)

x[i] = 0;

x[1] = 1;

scanner.close();

}

void HamiltonianMethod(int k)

{

while (true)

{

NextValue(k, G, x, n);

if (x[k] == 0)

Design & Analysis of Algorithm Lab Manual 2020

Page 102 Dept of ISE, SJCIT

return;

if (k == n)

{

}

else

}

}

for (int i = 1; i <= k; i++)

System.out.print(x[i] + " ");

System.out.println(x[1]);

System.out.println();

found = true;

return;

HamiltonianMethod(k + 1);

void NextValue(int k, int G[][], int x[], int n)

{

while (true)

{

x[k] = (x[k] + 1) % (n + 1);

if (x[k] == 0)

return;

if (G[x[k - 1]][x[k]] != 0)

{

int j;

for (j = 1; j < k; j++)

if (x[k] == x[j])

break;

if (j == k)

if ((k < n) || ((k == n) && G[x[n]][x[1]] != 0))

return;

}

}

}

}

OUTPUT Hamiltonian Cycle

Enter the number of the vertices: 4

If edge between the following vertices enter 1 else 0:

1 and 2: 1

1 and 3: 1

1 and 4: 1

Design & Analysis of Algorithm Lab Manual 2020

Page 103 Dept of ISE, SJCIT

Page 104 Dept of ISE, SJCIT

2 and 3: 1

2 and 4: 1

3 and 4: 1

Solution:

1 2 3 4 1

1 3 2 4 1

1 4 2 3 1

NOTES AND OUTPUT SPACE

Design & Analysis of Algorithm Lab Manual 2020

Page 105 Dept of ISE, SJCIT

Design & Analysis of Algorithm Lab Manual 2020

Page 106 Dept of ISE, SJCIT

ADDITIONAL PROGRAMS

1) All pair shortest paths problem using Floyd’s algorithm. Parallelize this algorithm , implement

it using OPenMP and determine the speed-up achieved.

.

include< stdio.h>

include <omp.h>

void floyds(int a[10][10],int n);

int min(int a,int b);

int main()

{

int thread_id,i,j,n,a[10][10];

double starttime,endtime;

system(“clear”);

printf(“ Enter the no of vertices”);

scanf(“%d”,&n);

printf(“Enter the weight matrix \n”);

printf(“ Enter 0 for self loops and 999 for no edge\n”);

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

{

scanf(“%d”,&a[i][j]);

}

starttime=omp_get_wtime();

floyds(a,n);

endtime= omp_get_wtime();

printf(“Speed up achieved is %f”,endtime-starttime);

}

int min(int a,int b)

{

return(a<b ?a:b);

}

void floyds(int a[10][10],int n)

{

int b[10][10],i,j,k,thread_id;

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

b[i][j]=a[i][j];

omp_set_num_threads(2);

pragma omp parallel for shared(b) private(i,j,k)

for (i=1; i<=n; i++)

{

for (j=1; j<=n; j++)

for(k=1; k<=n; k++)

{

thread_id=omp_get_thread_num();

Design & Analysis of Algorithm Lab Manual 2020

Page 107 Dept of ISE, SJCIT

b[i][j]=min(b[i][j],b[i][k]+b[k][j]);

printf(“Thread %d:b[%d][%d]=%d\n”,thread_id,i,j,b[i][j]);

}

}

printf(“ All pairs shortest path \n”);

for (i=1; i<=n; i++)

{

for (j=1; j<=n; j++)

printf(“%5d”, b[i][j]);

printf(“\n”);

}

return;

}

Output:

Enter the Number of vertices

3

Enter 0 for self loops and 999 for noedges

0 5 999

999 0 3

2 999 0

All pairs shortest path is

0 5 8

5 0 3

2 7 0

Design & Analysis of Algorithm Lab Manual 2020

Page 108 Dept of ISE, SJCIT

2) Implement N-Queens problem using Backtracking method

include< stdio.h>

include < conio.h>

include <process.h>

#include <math.h >

int x[10];

void main()

{

int k, i, j, n, count=1;

int place (int);

clrscr();

printf(“ Enter the number of Queens\n”);

scanf(“%d”,&n);

if(n= = 0 || n= = 2 || n= = 3)

printf(“ No Solution”);

else

k=1;

x[1]=0;

while(k)

{

x[k]= x[k]+1;

while((x[k] <=n) && (!place(k)))

x[k]= x[k]+1;

if(x[k]<=n)

{

if(k= = n)

{

getch();

printf(“Solution %d \n”,count++);

for (i=1; i<=n; i++)

{

}

}

else

{

for (j=1; j<x[i]; j++)

printf(“ * “);

printf(“ Q”);

for (j=x[i]+1; j<=n; j++)

printf(“ * “);

printf(“ \n”);

k + = 1;

x[k]=0;

}

Design & Analysis of Algorithm Lab Manual 2020

Page 109 Dept of ISE, SJCIT

}

else

}

k - = 1;

getch();

}

int place(int p)

{

int i;

for (i=1; i<=(p-1); i++)

if((x[i]= = x[p]) || ((abs(x[i]- x[p])) = = (abs(i-p))))

return 0;

return 1;

}

Output:

Enter the no of queens

4

Solution 1

Q * *

* * * Q

Q * * *

* * Q *

Solution 2

* * Q *

Q * * *

* * * Q

* Q * *

Design & Analysis of Algorithm Lab Manual 2020

Page 110 Dept of ISE, SJCIT

Page 111 Dept of ISE, SJCIT

VIVA VOICE QUESTIONS

1. What is an Algorithm? (L2)

Algorithm is a Step by step procedure to Solve a given problem for a finite number of input producing finite

number of output with desired output.

2. What is a Flow Chart?(L2)

Flow chart is a Graphical Representation of a solution to the Problem.

3. What is the difference between Algorithm, Flow Chart, Program?(L2)

 Algorithm specifies the different things to be followed for solving a Problem.

 Flow Chart is a Graphical Representation of a Solution to the Problem. Both Algorithm and Flow Chart

are Machine Independent.

 Program is a Set of Instructions which is used as a tool to communicate to the machine to get our work

done,Program is Machine Dependent for particular Machine.

4. What is the Aim of DAA lab or why we need to study DAA Lab?(L3)

DAA is a discipline, where we are dealing with designing or writing the algorithm keeping in Consideration

of Space and Time Complexity, Such that Our Algorithm should execute in a very minimum amount of

time by Minimum Space or RAM.

5. Define Space and Time Complexity? Among this which one is more prioritized?(L3)

Space Complexeity is a measure of Amount of Space taken by a Program to finish its Execution.

Time Complexeity is a measure of amount of time taken by a program to complte its Execution.Depending

Upon Application it is considered,EX:For Mobile or Handheld Devices,We give Prefernce for both Space

and time.

For a Huge and Inter active Systems like Web Applications we give more Preferences to time Complexeity.

6. What is Design and what is Analysis of a Program?(L2)

Design is a Process of Writing an algorithm to a given Problem so that it should accept finite number of

input and finite number of output with a definite output and Should Exit appropriately.

Analysis:Analysis is a next Phase of Writing an Algorithm ,in this phase we calculate the Efficiency of an

Algorithm i.e time and space needed by an algorithm.

7. Write the general plan for analyzing the recursive algorithms.(L2)

Identify the inputs.

Identify the output is depended only on number of inputs.

Design & Analysis of Algorithm Lab Manual 2020

Page 112 Dept of ISE, SJCIT

Identify the Basic Operation in ALgorithm.

Form or write the Recursive Relation to the Algorithm.

8. What are the various notations used to write an algorithm? (L2)

(i) Pseudocode (ii)Natural Language and etc..

9. What is a Pseudocode?(L2)

It’s a notation which is having the combination of Programming Constructs and English like Statements.

10. What is Asymptotic Notations?Explain Various notations used for the same.(L2)

Asymptotic Notation is a way of Representing an algorithm time Complexeity in terms of

Best,Average,Worst.

There are 3 Notations used to represent (i)Ω(n)-Best Case :-Here the algorithm runing time g(n) is less than

f(n). for all n>=no .Such that there exist a constant C.

f(n)>=c.g(n),for all n>no

Refer Text book for Graph.

(ii) O-Worst Case:-Here the Algorithm runing time g(n) is greater than F(n) for all n>=no .

f(n)<=c.g(n) ,for all n>=no, Such that there exist a constant C.

Refer Text book for Graph.

(iii) Ө-Average Case:When there is more than one parameter controlling the Execution time and We should

go for Amortized analysis or Series of Execution for the Same Input and the Resultant Would be Average

Case is which is c1.g(n)<f(n)<c2.g(n) ,for all n>=no, Such that there exist a constant C.

Refer Text book for Graph.

11. List out the few topics you have studied or Explain few topics of your Favourite list.(L2)

1. Mention a topics Which you are really good in,the topics like

 Searching-Explain any one Searching Algorithm

 Sorting-Explain Any one Sorting Algorithm.

 String Matching-Explain any one method ,Select either Brute Force or Horspool Method.

 Divide and Conquer-Explain either Merge sort or Quick sort which You are More

Comfortable.

 Greedy Technique-Define Greedy and Explain Any problem with Greedy Method

Ex:Knapsack Problem,Job Sequencing with Deadlines,Prims ,Kruskals and etc..

 dynamic Programming-Explain any Problem with Dynamic Programming Approach

Design & Analysis of Algorithm Lab Manual 2020

Page 113 Dept of ISE, SJCIT

 Decrease and Conquer:Explain any problem which can be Solved Using decrease and

Conquer,EX:DFS,BFS,Topological Sorting.

 Limitations of Algorithms:Explain few things about Decision trees and its use in solving a

Problem.

 Coping with Limitations of Algorithms:Explain Backtracking and one problem which illustrates

about Backtacking method and Wind Up.

12. What is the Time Complexeity of Bubble Sort,Selection Sort ,Merge Sort,Quick Sort?(L3)

Bubble Sort-n2,

Selection Sort- n2

Merge Sort-nlog.n

Quick Sort -nLogn, Worst case for Quick Sort- n2

13. Which sorting agorithm is more Efficient and why?(L3)

Quick Sorting is More Efficient ,because this algorithm is instable algorithm and

inplace.

14. What do you mean by the term Instable Algorithms?(L2)

The Instable Algorithms are one, which divides the array as certainly depending upon pivot or key element

and hence i index precedes index j

15. Which algorithms are faster?(L3)

Instable Algorithms are much Faster compared to Stable Algorithms.

16. For what type of instance Merge sort do better than Quick Sort?(L3)

For a Larger input and a sorted input values.

17. For what type of instance Quick sort do better than Merge Sort? (L3)

For Smaller Set of input numbers.

18. What are Inplace Algorithms?

Inplace Algorithms are the one which doesn't occupies Extra Space.

19. Write the order of growth terms as per the time Execution in Ascending Order.(L3)

logn,n,nlogn,n2,n3,..... nn,2n,n!

20. What is Brute Force Technique? When We Should Use? (L3)

Brute Force is a straight Forward Technique to solve a problem, We used to solve a Problem through

this approach when we don't have sufficient data to solve a problem in Efficient Way.

21. What is the difference between Divide and Conquer, Decrease and Conquer? (L2)

Design & Analysis of Algorithm Lab Manual 2020

Page 114 Dept of ISE, SJCIT

Divide and Conquer can be solved to solve a problem with a larger data set and when there is no

dependency between any of the data sets.

 Divide and Solve as Small as Small sets.

 Conquer or Merge it get one final resultant data set.

Decrease and Conquer is almost similar to Divide and Conquer but we are finding a solutions to the

problem in a different variations,EX:Decrease by Constant (Usually by One),Decrease by Constant factor

which is almost similar to Divide and Conquer Technique(Usually by two),Decrease by Variable(The

Dividing Criteria changes for each iteration depends upon the data set.

22. Define Greedy Technique. (L2)

Greedy Technique is always applied for the problem of the type optimization type, which reduces loss

and increases profit.

23. Define Optimal and Feasible Solution. (L2)

Optimal Solution is a solution which is best among N Feasible Solution.

Feasible Solution is a solution which Satisfies a Problem Constraints/conditions.

24. Can A Problem solved by all the algorithmic Techniques.(L3)

Yes,but some problems will give better results with some Algorithmic Technique and it may give worst

result when it is applied with other technique.

25. State and Explain Knapsack Problem. (L2)

Filling the Maximum number of items to the Knapsack (Container) Which Increases the profit and

decreases the Loss.

26. State Few Algorithmic Techniques which you have studied. (L2)

Brute Force Technique

Divide and Conquer

Greedy Technique

Dynamic Programming

Decrease and Conquer

27. Which one is Most Admired algorithmic Technique?(L3)

Dynamic Programming.

28. What is Spanning tree and Minimum Spanning tree?(L2)

A tree Without Cycles are called as Spanning tree .

Design & Analysis of Algorithm Lab Manual 2020

Page 115 Dept of ISE, SJCIT

A Minimum Spanning Tree is a spanning tree which yeilds the very less Cost when all the edges cost

summed up.

29. How Many Spanning Tree can a Tree can have?(L3)

A tree can have 1 to many number of Possible ways of Spanning Tree.

30. Differentiate between Prims and Kruskals Algorithm for finding MST.(L2)

In Prims We consider any one vertex in the graph as Source and We compute the distance from that source

to other vertices ,after computing the vertices which has minimum value among (n-1) vertices is added to

tree vertices and that respective edges added to tree Edges Set.The above mentioned Process continues till

we reach (n-1) vertices.

In Kruskals we first arrange the edges in Ascending Order and then we start to form the tree which wont form

cycles,if adding that edges forms cycles then that edges is dropped from adding to tree edges.The above said

process is continues till we reach the count of

(n-1) Vertices.

31. What is the Application of Prims and Kruskals Algorithm?(L3)

In Networks to remove the Cyclicity of the Network.

32. Explain Job Sequencing With Deadlines?(L2)

Placing or scheduling the maximum number of Jobs to a machine without violating the deadlines constraint

of any of the Jobs in Sequence.

33. Why the Name Bubble Sort named?(L3)

Because in first Pass the first highest data will bubbles up,so since the largest element bubbles up

in the first and second largest element bubbles up in the Second pass and so on, so hence the name bubble

sort.

34. Why the Name Selection Sort?(L3)

The Selection sort is named because we initially first select an arrays first element as minimum and will

compare with other elements ,so in pass one first least element goes to the first position and so on so

forth for 2nd,3rd and so on. Selecting

35. What is the difference between Brute force strings matching to Horspool String Matching

Method? (L2)In brute Force we compare each and every element of the text to the pattern by shifting

the text position by one and in Horspool method we shift it by number of shift positions recorded in the

shift table.

36. Explain Merge Sort?(L2)

Design & Analysis of Algorithm Lab Manual 2020

Page 116 Dept of ISE, SJCIT

In Merge Sort will divide the entire input set by 2 until we reach low<high and later will find a solution to

each item by comparing half of the array data set to the other half array data set and finally we merge it

to form a sinle array(conquer)

37. What is the Basic Operations in Merge sort and Quick sort?(L2)

In Merge Sort the Basic Operations is Comparisions and in Quick sort basic Operations is Partitioning and

hence also known as partitioning sort.

38. Why the Insertion Sort?(L3)

We are Inserting an element to its suitable place by comparing n elements for each pass.

39. What is the Use of DFS and BFS?(L2)

DFS and BFS both used to check the Connectivity of a graph,Cyclicity in a graph,Spanning tree of a

graph.

40. Differentiate between DFS and BFS.(L2)

DFS and BFS are both the Graph Traversing Technique,in which DFS Traverse the Graph in a depth

wise(Vertical) and BFS Traverse the Graph from left to right(Horizontal)

41. Which Data structures used in BFS and DFS.(L2)

BFS USes Queue as its data structure and DFS uses as stack its Data structure.

42. What are back edges in DFS and Cross Edges in BFS.(L2)

Back Edges and Cross edges are the Edges which already visited by a ancestor node.

43. What is Topological Sorting?(L2)

Topological Sorting is a Sorting Technique used for sorting Vertices in the Graph.

44. What is the Conditions necessary for a Topological Sorting? (L3)

For a Topological Sorting the Graph Should be DAG(Directed Acyclic Graph)

45. What are the Different methods used to solve a topological Sorting ?(L3)

(i) Source Removal Method

(ii) Using DFS based Scheme.

46. What is the Use of Topological Sorting?(L3)

Use of Topological Ordering is in the field of Operating System for Scheduling and in

Networks,Automation and Robotics.

47. What is Dijikstra's Algorithm?(L2)

Dijikstra's Algorithm is Used to find the Single shortest Path from source to the other vertex.

48. What is a graph?(L2)

Design & Analysis of Algorithm Lab Manual 2020

Page 117 Dept of ISE, SJCIT

Graph is a component which is having a set of Edges and vertices G={V,E}

49. What are the different ways that can be represents a graph?(L2)

Adjaceny Matrix and Adjacency List.

50. What is Adjacency Matrix?(L2)

Is a Matrix which illustrates the Graph in the form of Matrix,if it is a weights Graph then we initialize

the value of the cost in that position(i,j) or else simply we write 1 to mention ther exist an edge between

(i,j) OR else we use 0 or 9999 to mention non connectivity of a graph.

51. What is the limitations of Algorithms?(L2)

Algorithm can't find the better the soltions when we come across the tight lower bound,So we can find the

better solutins which is not possible with Algorithmic way.To find the Tight lower bound we use Decision

Trees.

52. What is Tight lower Bound?(L2)

It is a Lower bound which is a best lower bound for an problem,beyond that no algorithm will produce

better results.

53. What are Decision Trees?(L2)

Decision trees are also known as Comparision Trees used to find the tight lower bound for a particular

Problem EX:Tight Lower Bound For Sorting is n.logn

and tight lower bound for Searching is logn which is not possible to get the better result.

54. What is a polynomial problem (P-type) (L2)

P-type problem are decision problems in which we can find the solutions in a polynomial time and is of

type deterministic.

55. What is NP-problem?(L2)

NP-Problem belongs to decision problem and these problems are Non Deterministic Polynomial i.e for

which the problem doesn't have deterministic solutions and Can be solved in Polynomial time

There are 2 phases in solving a problem.

(i) Guessing(Non-Deterministic stage) Producing N number of Candidate Outputs.

(ii) Verification(Deterministic Stage) Verifying The correctness of N Number of Candidate Outputs.

56. What is NP-Complete Problems? (L2)

Np_Complete Problems belongs to Decision problems and NP type Problems .

These problems can be find the solutions by converting or reducing to the problem which we know the

Solutions.

Design & Analysis of Algorithm Lab Manual 2020

Page 118 Dept of ISE, SJCIT

57. What is a trivial lower bound?(L2)

Trivial bound can be derived by formulating the number of inputs that has to be given and number of

outputs that has to be generated.

58. Explain Bactracking W.r.t

(I)Subset Problem (ii)N-Queens Problem

59. Explain Subset Problem.(L2)

In a given Set S ,find the Subset,in which the sum of all subset elements is equal to the sum d which is

predefined in a problem.

60. Explain N-Queens Problem.(L2)

N-Queens Problem is of Placing a N-Queens in a N*N Chess board such that No 2-Queens Should be

placed in the same Row,Column and same diagnol(N=Should consider both principal diagonal elements)

61. What is Hamiltonian Circuit?(L2)

Hamiltonian circuit is a problem in which that circuit starts from a source vertex and has other vertex in

any order without repeating and Should end with the Source vertex only i.e source and Destination vertex

should be same.

62. Explain the Problem of TSP.(L2)

Travelling Sales Person Problem is a problem in which he should Visit N number of cities with a minimum

number of Cost by visiting every city Exactly one and the city what he is started should end with same

city.

63. What is the Concept of Dynamic Programming?(L3)

Deriving a Solution to the basic Condition and Extracting the solutions for the rest of the other data sets

by Previously drawnd Solution.Computer to other algorithmic Technique Dynamic Programming

because it avoids lot of reworking on the same Solution what we have solved in the earlier phases of

deriving the solution to the problem.

64. What is the goal of Warshalls Algorithm?(L3)

Warshall’s algorithm is to find the shortest distance between a node to all the other nodes in the graph.

It Uses the Property of Transitive Closure i.e if there exist a path between (i,k) and (k,j) then there

surely exist a path between (i,j)

(i,k) & (k,j)---(I,J)

65. What is the use of Floyds algorithm?(L3)

It is use to find the All pairs shortest Path of an Graph.

Design & Analysis of Algorithm Lab Manual 2020

Page 119 Dept of ISE, SJCIT

66. What is Parallel Programming?(L2)

Parallel programming is a technique of writing a Program to Execute a series of instructions parallel to

gain Speed up in Execution.

67. What is openMp?(L2)

OpenMp is an abbreviation of Open Multi programming and it is a programming tool which creates an

environment to execute a program in the Parallel fashion i.e, N number of Instructions at the same time

so as to achieve the spped up.

68. When one can go for Parallel Programming?(L3)

Parallel Programming Fashion is can be opted when there is no dependency between the series of

Instructions that has to be Executed Parallely.

69. What is the Command used to compile a parallel Program?

(L2) Command is cc-fopen filename.c

70. What is cc stands for and –fopenmp stands for?(L2)

Cc stands for invoking a turbo C Compiler and –fopenmp is an option to the command which directs a

compiler to invoke or use the parallel programming API so as to Execute the program in a parallel Way.

71. What are the Maximum Number of Possible Ways for a travelling Sales Person with N number of

Cities?(L4)

(N-1)! i.e for 5 cities (5-1)!= 4 !=24 ways.

72. Give Some Examples for a problem of type NP and NP-Complete?(L2)

Knapsack,Job Sequenncing with Deadlines,N-Queens Problem,Subset Problem,TSP and Hamiltonian

circuit.

73. Give few Examples for a problem of type P?(L2)

Sorting Searching,String Matching and Hashing Problem.

74. What is the difference between Functions,Procedures,SubRoutines,Macros and Pseudo Code.

Functions:are the Constructs which consists of set of Instructions which is meant to Perform

some Specific Task.It is the Programming Constructs used in Middle Level/High Level

Languages like C/C++.(L3)

Design & Analysis of Algorithm Lab Manual 2020

Page 120 Dept of ISE, SJCIT

Procedures:It is same as the Functions but we call it Procedures in Assembly languages like

Masm,Tasm.The Size of the Procedures is small Compared to Functions and it uses the Mnemonics like

JLR,ADD,SUB,DIV,CMP and etc.

SubRoutines: Same as above(Procedures,used in languages like FORTRAN)

Macros:Macros are the functions Which is Small in Size ,usually used as Library files ,it is invoked only

if it is needed.

75. Name Standard Input,Standard output,Standard Error.(L2)

Standard Input-Keyboard

Standard Output-Monitor

Standard Error-Monitor

76. What are standard I/O functions? (L2)

Printf() and Scanf()

77. What is the use of using getch() in every Program?Does it Impact to the ouput of the Program?

(L3)

Getch() is a informal input functions which makes the ouput screen to be displayed until we enter a

character(Read-input operations)

Getch() doesn’t Impact in anyways

78. What are Command line Arguments (L2)

The Arguments which are passed at command line to the function main()

Are called as Comman line Arguments.

Design & Analysis of Algorithm Lab Manual 2020

Page 121 Dept of ISE, SJCIT

 LAB EVALUATION RUBRICS

 FOR 40 MARKS (2018 NEW SCHEME)

Sl. No. DESCRIPTION MARKS

1. CONTINUOUS EVALUATION
a. Observation write up & punctuality

b. Conduction of experiment and output

c. Viva voce

d. Record write up

25
5.0
8.0
4.0
8.0

2. INTERNAL TEST 15.0

Design & Analysis of Algorithm Lab Manual 2020

	DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING
	Mrs. BHANUMATHI S
	Assistant Professor
	Department of ISE
	Year 2020

	EXPERIMENT 1A PROGRAM STATEMENT
	CONCEPT
	Types of java constructors

	PROGRAM
	EXPERIMENT 1B PROGRAM STATEMENT
	CONCEPT (1)
	Types of java constructors

	PROGRAM (1)
	EXPERIMENT 2A PROGRAM STATEMENT:
	CONCEPT:
	PROGRAM:
	EXPERIMENT 2B PROGRAM STATEMENT
	CONCEPT (2)
	Constructors of StringTokenizer class

	PROGRAM :
	EXPERIMENT 3A PROGRAM STATEMENT
	Write a java program to read two integers and b. Compute a/b and print when b is not

	CONCEPT (3)
	Exception Handling

	PROGRAM (2)
	/* 3a. Write a Java program to read two integers a and b. Compute a/b and print, when b is not zero. Raise an exception when b is equal to zero.*/
	OUTPUT RUN1
	5
	RUN2
	4
	RUN3
	4 (1)

	EXPERIMENT 3B PROGRAM STATEMENT
	CONCEPT: (1)
	Life Cycle of a Thread
	Create a Thread by Extending a Thread Class

	Synchronization :
	PROGRAM (3)
	EXPERIMENT 4 PROGRAM STATEMENT
	CONCEPT (4)
	Algorithm :

	PROGRAM (4)
	while (true)

	EXPERIMENT 5
	CONCEPT (5)
	Complexity:

	EXPERIMENT 6A
	CONCEPT (6)
	EXPERIMENT 6B
	Algorithm:
	break;

	EXPERIMENT 7
	CONCEPT (7)
	Steps
	Example

	NOTES AND OUPUT AREA
	CONCEPT (8)
	General Properties of Spanning Tree
	Minimum Spanning Tree
	Step 1 - Remove all loops and Parallel Edges
	Step 2 - Arrange all edges in their increasing order of weight
	Step 3 - Add the edge which has the least weightage

	EXPERIMENT 9 PROGRAM STATEMENT
	CONCEPT (9)
	Step 1 - Remove all loops and parallel edges
	Step 2 - Choose any arbitrary node as root node
	Step 3 - Check outgoing edges and select the one with less cost

	PROGRAM (5)
	/* 9. Prim's */

	OUTPUT
	EXPERIMENT 10A
	CONCEPT (10)
	PROGRAM (6)
	EXPERIMENT 10B PROGRAM STATEMENT
	CONCEPT (11)
	PROGRAM

	EXPERIMENT 11 PROGRAM STATEMENT
	CONCEPT (12)
	EXPERIMENT 12 PROGRAM STATEMENT
	CONCEPT

	PROGRAM (7)
	while (true)
	while (true) (1)
	break;
	NOTES AND OUTPUT SPACE
	1) All pair shortest paths problem using Floyd’s algorithm. Parallelize this algorithm , implement it using OPenMP and determine the speed-up achieved.
	2) Implement N-Queens problem using Backtracking method
	1. What is an Algorithm? (L2)
	2. What is a Flow Chart?(L2)
	3. What is the difference between Algorithm, Flow Chart, Program?(L2)
	4. What is the Aim of DAA lab or why we need to study DAA Lab?(L3)
	5. Define Space and Time Complexity? Among this which one is more prioritized?(L3)
	6. What is Design and what is Analysis of a Program?(L2)
	7. Write the general plan for analyzing the recursive algorithms.(L2)
	8. What are the various notations used to write an algorithm? (L2)
	9. What is a Pseudocode?(L2)
	10. What is Asymptotic Notations?Explain Various notations used for the same.(L2)
	11. List out the few topics you have studied or Explain few topics of your Favourite list.(L2)
	12. What is the Time Complexeity of Bubble Sort,Selection Sort ,Merge Sort,Quick Sort?(L3)
	13. Which sorting agorithm is more Efficient and why?(L3)
	14. What do you mean by the term Instable Algorithms?(L2)
	15. Which algorithms are faster?(L3)
	16. For what type of instance Merge sort do better than Quick Sort?(L3)
	17. For what type of instance Quick sort do better than Merge Sort? (L3)
	18. What are Inplace Algorithms?
	19. Write the order of growth terms as per the time Execution in Ascending Order.(L3)
	20. What is Brute Force Technique? When We Should Use? (L3)
	21. What is the difference between Divide and Conquer, Decrease and Conquer? (L2)
	22. Define Greedy Technique. (L2)
	23. Define Optimal and Feasible Solution. (L2)
	24. Can A Problem solved by all the algorithmic Techniques.(L3)
	25. State and Explain Knapsack Problem. (L2)
	26. State Few Algorithmic Techniques which you have studied. (L2)
	27. Which one is Most Admired algorithmic Technique?(L3)
	28. What is Spanning tree and Minimum Spanning tree?(L2)
	29. How Many Spanning Tree can a Tree can have?(L3)
	30. Differentiate between Prims and Kruskals Algorithm for finding MST.(L2)
	31. What is the Application of Prims and Kruskals Algorithm?(L3)
	32. Explain Job Sequencing With Deadlines?(L2)
	33. Why the Name Bubble Sort named?(L3)
	34. Why the Name Selection Sort?(L3)
	36. Explain Merge Sort?(L2)
	37. What is the Basic Operations in Merge sort and Quick sort?(L2)
	38. Why the Insertion Sort?(L3)
	39. What is the Use of DFS and BFS?(L2)
	40. Differentiate between DFS and BFS.(L2)
	41. Which Data structures used in BFS and DFS.(L2)
	42. What are back edges in DFS and Cross Edges in BFS.(L2)
	43. What is Topological Sorting?(L2)
	44. What is the Conditions necessary for a Topological Sorting? (L3)
	45. What are the Different methods used to solve a topological Sorting ?(L3)
	46. What is the Use of Topological Sorting?(L3)
	47. What is Dijikstra's Algorithm?(L2)
	48. What is a graph?(L2)
	49. What are the different ways that can be represents a graph?(L2)
	50. What is Adjacency Matrix?(L2)
	51. What is the limitations of Algorithms?(L2)
	52. What is Tight lower Bound?(L2)
	53. What are Decision Trees?(L2)
	54. What is a polynomial problem (P-type) (L2)
	55. What is NP-problem?(L2)
	56. What is NP-Complete Problems? (L2)
	57. What is a trivial lower bound?(L2)
	58. Explain Bactracking W.r.t
	59. Explain Subset Problem.(L2)
	60. Explain N-Queens Problem.(L2)
	61. What is Hamiltonian Circuit?(L2)
	62. Explain the Problem of TSP.(L2)
	70. What is cc stands for and –fopenmp stands for?(L2)
	71. What are the Maximum Number of Possible Ways for a travelling Sales Person with N number of Cities?(L4)
	72. Give Some Examples for a problem of type NP and NP-Complete?(L2)
	73. Give few Examples for a problem of type P?(L2)
	74. What is the difference between Functions,Procedures,SubRoutines,Macros and Pseudo Code. Functions:are the Constructs which consists of set of Instructions which is meant to Perform some Specific Task.It is the Programming Constructs used in Middle...
	75. Name Standard Input,Standard output,Standard Error.(L2)
	76. What are standard I/O functions? (L2)
	78. What are Command line Arguments (L2)

