

Prepared By: P.SUDIR

 Assoc.Professor,Dept of E&C,SJCIT

Verfied by:

Dr.SHOBHA.N
HOD,Dept of E&C,SJCIT

DEPARTMENT OF ELECTRONICS

& COMMUNICATION

Digital Signal

Processing

Laboratory Manual

 (21EC42)

V SEMESTER

Course Objective

C307.1 Develop programs for digital signal processing algorithms using Scilab

C307.2 Build interfacing programs to DSP chip using C

C307.3 Make use of tool such as Scilab and code composer studio for providing solutions

C307.4 Experiment with Texas processors TMS320C6713

C307.5 Improve the programs to meet DSP applications like building digital filters

C307.6 Demonstrate the system to meet real time signal processing

Course Specific Outcome

PSO1 PSO2

C307.1 3 3

C307.2 3 3

C307.3 3 3

C307.4 3 3

C307.5 3 3

C307.6 3 3

C307 3 3

At the end of the program students will have

PSO1: Ability to absorb and apply fundamental knowledge of core Electronics and Communication

Engineering in the analysis, design and development of Electronics Systems as well as to

interpret and synthesize experimental data leading to valid conclusions

PSO2: Ability to solve complex Electronics and Communication Engineering problems, using latest

hardware and software tools, along with analytical and managerial skills to arrive at appropriate

solutions, either independently or in team

RUBRICS FOR LAB

 FOR 20 MARKS

Sl.No. DESCRIPTION MARKS Scaled

marks

1. CONTINUOUS EVALUATION

 Observation write up & punctuality

 Conduction of experiment and output

 Viva voce

 Record write up

30

5

10.0

5

10.0

15

2. INTERNAL TEST 50 5

INDEX

Student Name: Max Marks: ……..

USN:

SL.

NO
NAME OF THE EXPERIMENT

Revised Bloom’s

Taxonomy (RBT)

Level

PART-A:

1 Computation of N point DFT of a given sequence and to plot magnitude and
phase spectrum.

L2, L3, L4

2 Computation of circular convolution of two given sequences and verification of
commutative, distributive and associative property of convolution.

L2, L3, L4

3 Computation of linear convolution of two sequences using DFT and IDFT. L2, L3, L4

4 Computation of circular convolution of two given sequences using DFT and
IDFT

L2, L3, L4

5 Verification of Linearity property, circular time shift property & circular
frequency shift property of DFT.

L2, L3, L4

6 Verification of Parseval’s theorem L2, L3, L4

7 Design and implementation of IIR (Butterworth) low pass filter to meet given
specifications.

L2, L3, L4

8 Design and implementation of IIR (Butterworth) high pass filter to meet given
specifications.

L2, L3, L4

9 Design and implementation of low pass FIR filter to meet given specifications. L2, L3, L4

10 Design and implementation of high pass FIR filter to meet given specifications.

L2, L3, L4

11 To compute N- Point DFT of a given sequence using DSK 6713 simulator.

L2, L3, L4

12 To compute linear convolution of two given sequences using DSK 6713
simulator

L2, L3, L4

13
To compute circular convolution of two given sequences using DSK 6713

simulator

L2, L3, L4

Experiment – 1

Aim: Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum.

Theory: In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of

equally-spaced samples of a function into a same-length sequence of equally-spaced samples of

the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency.

The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence.

An inverse DFT is a Fourier series, using the DTFT samples as coefficients

of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as

the original input sequence. The DFT is therefore said to be a frequency domain representation of

the original input sequence. If the original sequence spans all the non-zero values of a function, its

DTFT is continuous (and periodic), and the DFT provides discrete samples of one cycle. If the

original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of

one DTFT cycle.

Example

Code1:

// Computation of N point DFT
clear ;
clc ;
close ;
i=sqrt(-1)
L=4; // Length of a sequence
N=4; // N-Point DFT
x=[1,2-i,-i,-1+2.*i];
// Computing DFT
X=fft(x,-1) ;
disp(X,'FFT of x[n] is X(k)=')
mag=abs(X)
// Plotting the spectrum
subplot(2,1,1)
a=gca();
a.data_bounds=[0,0;5,7];
plot2d3('gnn',0:length(mag)-1,mag)
b=gce() ;
b.children(1).thickness=3;
xtitle('Graphical Representation of
Amplitude','n','mag(X[k]');
phase=phasemag(X)
subplot(2,1,2)
a=gce();
a.data_bounds=[0,0;5,7];
plot2d3('gnn',0:length(XX)-1,XX)
b=gce();
b.children(1).thickness=3;
xtitle('Graphical Representation of phase','k','angle(X(k))') ;

Output:

 FFT of x[n] is X(k)=

 2. - 2. - 2.i - 2.i 4. + 4.i

 mag =

 2. 2.8284271 2. 5.6568542

 phase =

 0. - 135. - 90. 45.

Experiment – 2

Aim: Computation of circular convolution of two given sequences and verification of

commutative, distributive and associative property of convolution.

Theory

Circular Convolution

The circular convolution, also known as cyclic convolution, of two aperiodic functions) occurs

when one of them is convolved in the normal way with a periodic summation of the other

function. That situation arises in the context of the Circular convolution theorem. The identical

operation can also be expressed in terms of the periodic summations

of both functions, if the infinite integration interval is reduced to just one period. That situation

arises in the context of the discrete-time Fourier transform (DTFT) and is also called periodic

convolution.

Circular convolution of two sequences x1 and x2 is defined as

The two sequences are x1 (n) = {1,2} and x2 (n) = {3,5,4}

Each sequence consists of four nonzero points. For purpose of illustrating the operations involved

in circular convolution it is desirable to graph each sequence as points on a circle. Thus the

sequences x1 (n) and x2 (n) are graphed as illustrated in the fig. We note that the sequences are

graphed in a counterclockwise direction on a circle. This establishes the reference direction in

rotating one of sequences relative to the other. Now, y (m) is obtained by circularly convolving x

(n) with h (n).

Code for Circular Convolution

// Code for Circular Convolution

clc ;

function [c]=circpro(a,b)

 x=[[a(1),a(4),a(3),a(2)] ;

 [a(2),a(1),a(4),a(3)] ;

 [a(3),a(2),a(1),a(4)] ;

 [a(4),a(3),a(2),a(1)]] ;

 c=x*b';

endfunction

a = [1,2,0,0]; // First sequence

b = [3,5,4,0]; // Second sequence

m = length (a) ; // length of first sequence

n = length (b) ; // length of second sequence

C1=circpro(a,b);

disp(C1','Circular Convolution using Matrix Method result ')

Result:

Circular Convolution using Matrix Method result

 3. 11. 14. 8.

Commutative Property: a b=b a

// Commutative Property

clc

lhs=circpro(a,b);

rhs=circpro(b,a);

disp(lhs','LHS')

disp(rhs','RHS')

disp('Commutative Property is verified')

Result:

LHS

 3. 11. 14. 8.

 RHS

 3. 11. 14. 8.

 Commutative Property is verified

* *

Distributive Property

a (b+c)=a b + a c

Code:

// Distributive Property

clc

a = [1,2,0,0]; // First sequence

b = [3,5,4,0]; // Second sequence

c= [1,2,3,0]; // Third Sequence

lhs=circpro(a,(b+c));

rhs=(circpro(a,b)+ circpro(a,c));

disp(lhs','LHS')

disp(rhs','RHS')

disp('Distributive Property is verified')

Result:

LHS

 4. 15. 21. 14.

 RHS

 4. 15. 21. 14.

 Distributive Property is verified

Associativity Property : (a b) c = a (b c)

// Associativity Property

clc

x1=circpro(a,b);

lhs=circpro(x1',c);

x2=circpro(b,c);

rhs=circpro(a,x2');

disp(lhs,'LHS')

disp(rhs,'RHS')

disp('Associativity Property is verified')

* * *

* * * *

Experiment –3

Aim: Computation of linear convolution of two sequences using DFT and IDFT.

Theory:

The mathematical definition of convolution in discrete time domain

 () () () ∑ () ()

where x[n] is input signal, h(n) is called Impulse Response and y[n] is output

convolution. Here we multiply the terms of x[k] by the terms of time-shifted h[n] and add them

up.

Here one of the input is shifted in time by a value every time it is multiplied with the other input

signal. Linear Convolution is quite often used as a method of implementing filters of various

types.

Eg: Perform Linear convolution of , - * ⃡ + and , - * ⃡ +

Tabular Column method

 , - * ⃡ +

The linear convolution of two sequences can be computed using the DFT (Discrete

Fourier Transform) and IDFT (Inverse Discrete Fourier Transform) as follows:

1. Compute the DFT of both sequences.

2. Multiply the DFTs element-wise.

3. Compute the inverse DFT of the result from step 2.

4. The result of the inverse DFT is the convolution of the two sequences.

Note: The length of the DFTs must be zero-padded to ensure that the result of the

inverse DFT is the correct length.

Code:

//Computation of linear convolution
clc

// Input sequences

x = [1,1,1,1];

y = [1,2,3,4];

// Find the length of the result

N = length(x) + length(y) - 1;

// Zero-pad the sequences to length N

x = [x, zeros(1, N-length(x))];

y = [y, zeros(1, N-length(y))];

// Compute the DFT of both sequences

X = fft(x);

Y = fft(y);

// Multiply the DFTs element-wise

Z = X .* Y;

// Compute the inverse DFT

z = ifft(Z);

// Round the result to remove any imaginary parts

z = round(real(z));

// Display the result

disp(z,' Linear Convolution Output');

Output:

Linear Convolution Output

 1. 3. 6. 10. 9. 7. 4.

Experiment –4

Aim: Computation of circular convolution of two given sequences using DFT and IDFT

Theory:

Circular convolution of two sequences x and y is computed as follows using DFT and

IDFT:

1. Compute the DFT of both sequences x and y, resulting in X and Y respectively.

2. Multiply element-wise X and Y to get Z.

3. Compute the IDFT of Z to obtain the circular convolution of x and y.

Note: The length of the sequences must be equal and a power of 2 for efficient

computation using the fast Fourier transform (FFT) algorithm.

Code:

// Circular convolution
clc ;
L=4; // Length of the Sequence
N=4; // N −p o i n t DFT
x=[1,2,0,0];
h=[3,5,4,0];
// Computing DFT
X1=fft(x ,-1) ;
X2=fft(h ,-1) ;
// M u l t i p l i c a t i o n of 2 DFTs
X3=X1.*X2 ;
// 'Circular Convolution Result
x3=abs(fft(X3,1));
disp (x3 ,'Circular Convolution Result')

Output: Circular Convolution Result

 3. 11. 14. 8.

Experiment –5

Aim: Verification of Linearity property, circular time shift property & circular frequency shift property of
DFT.

Proof :

a) Linearity property

The linearity property of the discrete Fourier transform (DFT) states that:

For any two sequences x and y, and any two scalars a and b, the DFT of the

sequence (ax + by) is equal to (aX) + (bY), where X and Y are the DFTs of x and y,

respectively.

Mathematically, it can be expressed as:

DFT(ax + by) = aDFT(x) + bDFT(y)

This property makes the DFT a useful tool for analyzing and processing linear

systems.

b) Circular Time Shift Property

The circular time shift property of the discrete Fourier transform (DFT) states that:

For any sequence x of length N, and an integer k such that 0 <= k < N, the DFT of

the circularly shifted sequence x_shift, where x_shift[n] = x[(n-k) mod N], is equal

to the element-wise multiplication of the DFT of x by a complex exponential

sequence.

Mathematically, it can be expressed as:

DFT(x_shift) = DFT(x) * exp(-j * 2 * π * k * n / N)

where j is the imaginary unit, π is the mathematical constant pi, and * represents

element-wise multiplication.

This property makes the DFT a useful tool for analyzing and processing signals

that have undergone circular time shifts.

c) circular frequency shift property

The circular frequency shift property of the discrete Fourier transform (DFT) states that:

For any sequence x of length N, and an integer k such that 0 <= k < N, the inverse DFT

(IDFT) of the element-wise multiplication of the DFT of x by a complex exponential

sequence, is equal to the circularly shifted sequence x_shift, where x_shift[n] = x[(n+k)

mod N].

Mathematically, it can be expressed as:

IDFT(DFT(x) * exp(j * 2 * π * k * n / N)) = x_shift

where j is the imaginary unit, π is the mathematical constant pi, and * represents

element-wise multiplication.

This property makes the DFT a useful tool for analyzing and processing signals that have

undergone circular frequency shifts.

Linearity:

// Linearity Property
clc
// Define the two sequences x and y
x = [1, 2, 3, 4];
y = [5, 6, 7, 8];
// Define the scalars a and b
a = 2;
b = 3;
// Compute the DFT of x and y using the fft
function
X = fft(x);
Y = fft(y);
// Verify the linearity property
z = a * x + b * y;
Z = fft(z);
disp("DFT of (ax + by):");
disp(Z);
Y=a*fft(x)+b*fft(y);
disp("aDFT(x) + bDFT(y):");
disp(Y);

Output:

DFT of (ax + by):
 98. - 10. + 10.i - 10. - 10. - 10.i

 aDFT(x) + bDFT(y):
 98. - 10. + 10.i - 10. - 10. - 10.i

Circular Time Shift Property

// Circular Time Shift Property
clc;
x = [1, 2, 3, 4, 5];
// Apply a circular time shift to the signal
y = circshift(x, 2);
// Verify the circular time shift property
N = length(x);
X = fft(x);
Y = fft(y);
for k=0:N-1
 phase = exp(-%i*2*%pi*k*2/N);
 disp(X(k+1)*phase ,Y(k+1),);
end

Output:
15. + 0.i
 15.
 4.045085 - 1.3143278i
 4.045085 - 1.3143278i
 -1.545085 - 2.126627i
 -1.545085 - 2.126627i
 -1.545085 + 2.126627i
 -1.545085 + 2.126627i

Circular Frequency Shift Property

Output:

 "lhs"
 2.6286556 4.253254 15. 4.253254 2.6286556
 "rhs"
 15. 4.253254 2.6286556 2.6286556 4.253254

// Circular Frequency Shift Property
clc
x = [1, 2, 3, 4, 5];
y = (abs(fft(x)));
shift=3;
d1=[0 0 0 0 0]
N = length(x);
for k=0:N-1
phase = exp(-%i*2*%pi*k*shift/N);
d1(k+1)= x(k+1).*phase
end
disp('lhs',abs(fft(d1)))
disp('rhs',y)

Experiment –6

Aim: Verification of Parseval’s Theorem.

Parseval’s Theorem

Output:

 "LHS" : 8. + 3.i

 "RHS" : 8. + 3.i

// Verification of parseval’s Theorem
clc
N = 4;
x =[1 %i 1-%i -1+%i]
g = [2 2-%i 3 4*%i]
X = fft(x);
G = fft(g);
lhs=sum(x.*conj(g))
rhs=sum(X.*conj(G))/N
disp('LHS',lhs)
disp('RHS',rhs)

Experiment –7

Aim: Design and implementation of IIR filter (Low pass and High Pass) to meet given specifications.

Theory:

IIR vs. FIR Filters

Classical IIR Filters

The classical IIR filters, Butterworth, Chebyshev Types I and II, elliptic, and Bessel, all

approximate the ideal “brick wall” filter in different ways.

This toolbox provides functions to create all these types of classical IIR filters in both the analog

and digital domains (except Bessel, for which only the analog case is supported), and in lowpass,

highpass, bandpass, and bandstop configurations. For most filter types, you can also find the

lowest filter order that fits a given filter specification in terms of passband and stopband
attenuation, and transition width(s).

Filter Method Description

Analog Prototyping Using the poles and zeros of a classical lowpass prototype filter

Direct Design Design digital filter directly in the discrete time-domain by

approximating a piecewise linear magnitude response

Generalized Butterworth

Design

Design lowpass Butterworth filters with more zeros than poles.

Parametric Modeling Find a digital filter that approximates a prescribed time or frequency

domain response.

// Lowpass Butterworth Filter (IIR)

clc;

close;

clf;

hz=iir(3,'lp','butt',[.1 .3],[.08 .03]);

[hzm,fr]=frmag(hz,256);

plot2d(fr',hzm')

xtitle('Discrete IIR filter: Low pass 0.1 < fr < 0.3 ',' ',' ');

q=poly(0,'q'); //to express the result in terms of the

delay operator q=z^-1

hzd=horner(hz,1/q)

// Evaluate magnitude response of the Low Pass FIR filter
fcut = 5; //hz
n = 7; // Filter order
hc1 = analpf(n, 'cheb1', [0.1 0], fcut*2*%pi);
hb = analpf(n, 'butt', [0 0], fcut*2*%pi);
hc1.dt = 'c';
hb.dt = 'c';
clf();
[fr, hf] = repfreq(hc1, 0, 15);
plot(fr, abs(hf), 'b')
[fr, hf] = repfreq(hb, 0, 15);
plot(fr, abs(hf), 'c')

legend(["Chebyshev I","Butterworth"]);
xgrid()
xlabel("Frequency (Hz)")
ylabel("Gain")
title("Analog filters of order 7")

// Highpass Butterworth Filter (IIR)
clc;

close;

clf;

hz=iir(3,'hp','butt',[.1 .3],[.08 .03]);

[hzm,fr]=frmag(hz,256);

plot2d(fr',hzm')

xtitle('Discrete IIR filter: High pass 0.1 < fr < 0.3 ',' ',' ');

q=poly(0,'q'); //to express the result in terms of the delay operator q=z^-1

hzd=horner(hz,1/q)

https://help.scilab.org/doc/6.0.0/en_US/clf.html
https://help.scilab.org/doc/6.0.0/en_US/repfreq.html
https://help.scilab.org/doc/6.0.0/en_US/plot.html
https://help.scilab.org/doc/6.0.0/en_US/abs.html
https://help.scilab.org/doc/6.0.0/en_US/repfreq.html
https://help.scilab.org/doc/6.0.0/en_US/plot.html
https://help.scilab.org/doc/6.0.0/en_US/abs.html
https://help.scilab.org/doc/6.0.0/en_US/legend.html
https://help.scilab.org/doc/6.0.0/en_US/xgrid.html
https://help.scilab.org/doc/6.0.0/en_US/xlabel.html
https://help.scilab.org/doc/6.0.0/en_US/xlabel.html#ylabel
https://help.scilab.org/doc/6.0.0/en_US/title.html

// High pass FIR Filter

fcut = 1; //hz

n = 1; // Filter order

hc1 = 1-analpf(n, 'cheb1', [0.1 0], fcut*2*%pi);

hb = 1-analpf(n, 'butt', [0 0], fcut*2*%pi);

hc1.dt = 'c';

hb.dt = 'c';

clf();

[fr, hf] = repfreq(hc1, 0, 15);

plot(fr, abs(hf), 'b')

[fr, hf] = repfreq(hb, 0, 15);

plot(fr, abs(hf), 'r')

legend(["Chebyshev I", "Butterworth"]);

xgrid()

xlabel("Frequency (Hz)")

ylabel("Gain")

title("High Pass Filter")

EXPERIMENTS TO BE DONE USING DSP KIT

Introduction of main board:

1. USB2.0 CY7C68013-56PVC, compatible with USB2.0 and USB1.1, including 8051

2. DSP TMS320C6713 TQFP-208 Package Device with, 4 layers board

3. SDRAM MT48LC4M16A2 1meg*16 *4 bank micron

4. FLASH AM29LV800B 8Mbit1Mbyte of AMD

5. RESET chip specialize for reset with button for manually reset

6. POWER power supply externally, special 5V, 3.3V, 1.6V chip for steady voltage

with remaining for other devices.

7. EEPROM 24LC64 for download of USB firmware

8. CPLD XC95144XL

9. AIC TLV320AIC23B sampling with 8-96KHZ, 4 channels with interface of

headphone.

The setup of USB Programmer and emulator in CCS v3.3

1. Install CCS v3.3 software according to the default Custom Install.

2. Install USB Emulator chooses to install directory from CCS v3.3 hat is if CCSv3.3

is installed in C: / CCStudio_v3.3 directory, then install the USB emulator driver in

this directory.

Procedure to Setup Emulator:

1. Open the “Setup CCStudio v3.3”

2. Choose c67xx in the “Family”.

3. Choose AHxds510usb emulator in the “Platform”.

4. Choose little in the “Endianness”.

5. Now you are left with two options under Available Factory Boards, Choose

C671X AHXDS510 USB Emulator, right click and “Add to system…”

6 . Now the Emulator and the processor both are selected under “system

configuration”.

7. Choose file and click on “save”.

8. Choose file and click on “exit” you will get a wizard as shown bellow

Click on yes.

Then it launches a Code Composer Studio

1. Connect the power supply to the board (5V, 3A): make sure that supply is there in the

board by pressing reset button.

2. After 2 minutes after power supply is turned on then connects the USB

Programmer cable to DSP JTAG connector and Host Computer where CCS

3.3 is installed.

12. Go to Debug and select the Reset Emulator

13. Go to Debug and select the option connect by Pressing Reset Button on the board

14. Now Target is connected

15 Go to Debug and press Reset CPU that will initialize your memory.

After Pressing Reset the CPU following window should appear in CCS.

Now Board is ready for working real and non real time programs.

Experiment 1: To compute N- Point DFT of a given sequence using DSK 6713
simulator.

Procedure to create new Project:

1. To create project, Go to Project and Select New.

2. Give project name and click on finish.

(Note: Location must be c:\CCStudio_v3.3\MyProjects).

3. Click on File New Source File, To write the Source Code.

C Code:

#include<stdio.h>

#include<math.h>

void main()

{

short N = 4;

short x[4] = {1,2,3,4}; // test data

float pi = 3.1416;

float sumRe = 0, sumIm = 0; // init real/imag components

float cosine = 0, sine = 0; // Initialise cosine/sine components

// Output Real and Imaginary components

float out_real[4] = {0.0}, out_imag[4] = {0.0}; int n = 0, k = 0;

for(k=0 ; k<N ; k++)

{

sumRe = 0;

sumIm = 0;

for (n=0; n<N ; n++)

{

cosine = cos(2*pi*k*n/N);

sine = sin(2*pi*k*n/N);

sumRe = sumRe + x[n] * cosine;

sumIm = sumIm - x[n] * sine; }

out_real[k] = sumRe;

out_imag[k] = sumIm;

printf("[%d] %f +j %f \n", k, out_real[k], out_imag[k]);

}

}

Output : [0] 10.000000 +j 0.000000

[1] -1.999963 +j 2.000022

[2] -2.000000 +j 0.000059

[3] -2.000108 +j -1.999934

1. Enter the source code and save the file with “.C” extension.

2. Right click on source, Select add files to project .. and Choose “.C “ file Saved before.

3. Right Click on libraries and select add files to project and choose

C:\CCStudio_v3.3\C6000\cgtools\lib\rts6700.lib and click open.

4. Go to file and load program and load “.out” file into the board..

5. Go to Debug and click on run to run the program.

6. a) Go to Project to Compile .

b) Go to Project to Build.

c) Go to Project to Rebuild All.

7. Observe the output in output window.

Experiment 2: To compute Linear Convolution of two given sequence using
DSK 6713 simulator.

Linear Convolution
Procedure to create new Project:

1. To create project, Go to Project and Select New.

2. Give project name and click on finish.

(Note: Location must be c:\CCStudio_v3.3\MyProjects).

3. Click on File -New Source- File, To write the Source Code.

Program:

#include<stdio.h>
main()
{ int m=4; /*Lenght of i/p samples sequence*/
int n=4; /*Lenght of impulse response Co-efficients */
int i=0,j;
int x[10]={1,2,3,4,0,0,0,0}; /*Input Signal Samples*/
int h[10]={1,2,3,4,0,0,0,0}; /*Impulse Response Co-efficients*/
/*At the end of input sequences pad ‘M’ and ‘N’ no. of zero’s*/
int y[10];
printf("Linear Convolution Result: ");
for(i=0;i<m+n-1;i++)
{ y[i]=0;
for(j=0;j<=i;j++)
y[i]+=x[j]*h[i-j];
}
for(i=0;i<m+n-1;i++)
printf(" %d\t",y[i]);
}

Result:

Linear Convolution Result: 1 4 10 20 25 24 16

4. Enter the source code and save the file with “.C” extension.

5. Right click on source, Select add files to project .. and Choose “.C “ file Saved before.

6. Right Click on libraries and select add files to Project.. and choose

C:\CCStudio_v3.3\C6000\cgtools\lib\rts6700.lib and click open.

7. a)Go to Project to Compile .

 b) Go to Project to Build.

 c) Go to Project to Rebuild All.

8. Go to file and load program and load “.out” file into the board.

9. Go to Debug and click on run to run the program.

10. Observe the output in output window.

Experiment 3: To compute Circular Convolution of two given sequence using
DSK 6713 simulator.

Procedure to create new Project:

1. To create project, go to Project and Select New.

2. Give project name and click on finish.

(Note: Location must be c:\CCStudio_v3.3\MyProjects).

3. Click on File New --> Source File, to write the Source Code.

Program:
#include<stdio.h>
int m,n,x[30],h[30],y[30],i,j,temp[30],k,x2[30],a[30];
void main()
{
printf(" enter the length of the first sequence\n");
scanf("%d",&m);
printf(" enter the length of the second sequence\n");
scanf("%d",&n);
printf(" enter the first sequence\n");
for(i=0;i<m;i++)
scanf("%d",&x[i]);
printf(" enter the second sequence\n");
for(j=0;j<n;j++)
scanf("%d",&h[j]);
if(m-n!=0) /*If length of both sequences are not equal*/
{
if(m>n) /* Pad the smaller sequence with zero*/
{
for(i=n;i<m;i++)
h[i]=0;
n=m;
}
for(i=m;i<n;i++)
x[i]=0;
m=n;
} y[0]=0;
a[0]=h[0];
for(j=1;j<n;j++) /*folding h(n) to h(-n)*/
a[j]=h[n-j];
/*Circular convolution*/
for(i=0;i<n;i++)
y[0]+=x[i]*a[i];
for(k=1;k<n;k++)
{
y[k]=0;
/*circular shift*/
for(j=1;j<n;j++)
x2[j]=a[j-1];
x2[0]=a[n-1];
for(i=0;i<n;i++)
{ a[i]=x2[i];
y[k]+=x[i]*x2[i];
}
}
/*displaying the result*/
printf(" the circular convolution is\n");
for(i=0;i<n;i++)
printf("%d \t",y[i]);
}

Output:

enter the length of the first sequence

4

enter the length of the second sequence

4

enter the first sequence

4 3 2 1

enter the second sequence

1 1 1 1

the circular convolution is

10 10 10 10

 Enter the source code and save the file with “.C” extension.

4. Right click on source, Select add files to project .. and Choose “.C “ file Saved before.

5. Right click on source, Select add files to project .. and Choose “.C “ file Saved before.

6. Right Click on libraries and select add files to Project.. and choose

C:\CCStudio_v3.3\C6000\cgtools\lib\rts6700.lib and click open.

7. a) Go to Project to Compile .

 b) Go to Project to Build.

 c) Go to Project to Rebuild All.

8. Go to file and load program and load “.out” file into the board.

9. Go to Debug and click on run to run the program.

10. Enter the input data to calculate the circular convolution.

The corresponding output will be shown on the output window as shown below

Digital Signal Processing LAB VIVA Questions

 (21EC42)

1) Mention basic blocks of DSP and DSP Applications

2) Mention advantages and disadvantages of DSP

3) Discuss the effect of undersampling for the given signal

4) Discuss the effect of Nyquist sampling for the given signal

5) Discuss the effect of oversampling for the given signal.

6) Define Linear Convolution

7) Define Circular convolution

8) Explain how Circular convolution is performed using Linear Convolution

9) Define Autocorrelation of Signal

10) Define Cross-correlation of two signal

11) Explain properties of Correlation.

12) Obtain the circular convolution of the following sequences x(n) = {1,2,1}; h(n) = {1, -2,2}

13) Define DFT and IDFT

14) How many multiplications and additions are required to compute N –point DFT using

radix – 2 FFT?

15) Distinguish between DFT and DTFT?

16) What is zero padding? What are its uses?

17) What is twiddle factor?

18) What is meant by in – place computation?

19) What are the differences and similarities between DIT and DIF.

20) Distinguish between linear convolution and circular convolution?

21) What are the differences between Overlap – add and Overlap – save method?

22) State the properties of DFT?

23) How will you perform linear convolution using circular convolution?

24) Find the circular convolution of x(n) = {1,2,3,4} with h(n) = {1,1,2,2}?

25) State Parseval’s relation with respect to DFT?

26) Explain Radix – 2 DIF FFT algorithm. Compare it with DIT – FFT algorithms.

27) Compute the linear convolution of finite duration sequences h(n) = {1,2} and x(n) = {1,

2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1} by Overlap add method?

28) Perform the linear convolution of the sequence x(n) = {1, -1, 1, -1} and h(n) = {1,2,3,4} using

DFT method

29) Compare Butterworth with Chebyshev filters?

30) What is known as pre warping in digital filters?

31) List the properties of Chebyshev filter?

32) Draw the direct form structure of IIR filter?

33) Why do we go for analog approximation to design a digital filter?

34) What is the advantage of direct form II realization when compared to direct form I

realization?

35) Why the Butterworth response is called a maximally flat response?

36) . Mention the advantages of cascade realization?

37) Write the properties of Butterworth filter?

38) What is bilinear transformation?

39) What are the advantages and disadvantages of bilinear transformation?

40) Distinguish between recursive realization and non recursive realization?

41) What is meant by impulse invariance method of designing IIR filter?

42) Give the expression for location of poles of normalized Butterworth filter?

43) What are the parameters that can be obtained from Chebyshev filter specification?

44) Explain the procedure for designing analog filters using the Chebyshev approximation.

45) What are advantages and disadvantages of FIR filter?

46) What is the reason that FIR filter is always stable?

47) State the condition for a digital filter to be causal and stable?

48) Compare Hamming window with Kaiser window.

49) What is the principle of designing FIR filter using frequency sampling method?

50) What is window and why it is necessary?

