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Course Objective          
 

C307.1 Develop programs for digital signal processing algorithms using Scilab 

C307.2 Build interfacing programs to DSP chip using C 

C307.3 Make use of tool such as Scilab and code composer studio for providing solutions  

C307.4 Experiment with Texas processors TMS320C6713 

C307.5 Improve the programs to meet  DSP applications like building digital filters 

C307.6 Demonstrate the system to meet real time signal processing 

 

Course Specific Outcome        

 

 

PSO1 PSO2 

C307.1 3 3 

C307.2 3 3 

C307.3 3 3 

C307.4 3 3 

C307.5 3 3 

C307.6 3 3 

C307 3 3 

 

At the end of the program students will have 

PSO1:  Ability to absorb and apply fundamental knowledge of core Electronics and Communication 

Engineering in the analysis, design and development of Electronics Systems as well as to 

interpret and synthesize experimental data leading to valid conclusions 

 

PSO2: Ability to solve complex Electronics and Communication Engineering problems, using latest 

hardware and software tools, along with analytical and managerial skills to arrive at appropriate 

solutions, either independently or in team 

 

RUBRICS FOR LAB  

 FOR 20 MARKS  

Sl.No. DESCRIPTION         MARKS Scaled 

marks 

1. CONTINUOUS EVALUATION  

 Observation write up & punctuality 

 Conduction of experiment and output 

 Viva  voce  

 Record write up 

30 

5 

10.0 

5 

10.0 

15 

 

 

2. INTERNAL TEST  50  5 
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Student Name:                                                                                                    Max Marks: …….. 

USN: 

SL. 

NO 
NAME OF THE EXPERIMENT 

Revised Bloom’s 

Taxonomy (RBT) 

Level 

PART-A:  

1 Computation of N point DFT of a given sequence and to plot magnitude and 
phase spectrum. 

L2, L3, L4 

2 Computation of circular convolution of two given sequences and verification of 
commutative, distributive and associative property of convolution. 

L2, L3, L4 

3 Computation of linear convolution of two sequences using DFT and IDFT. L2, L3, L4 

4 Computation of circular convolution of two given sequences using DFT and 
IDFT 

L2, L3, L4 

5 Verification of Linearity property, circular time shift property & circular 
frequency shift property of DFT. 

L2, L3, L4 

6 Verification of Parseval’s theorem L2, L3, L4 

7 Design and implementation of IIR (Butterworth) low pass filter to meet given 
specifications. 

L2, L3, L4 

8 Design and implementation of IIR (Butterworth) high pass filter to meet given 
specifications. 

L2, L3, L4 

9 Design and implementation of low pass FIR filter to meet given specifications. L2, L3, L4 

10 Design and implementation of high pass FIR filter to meet given specifications. 
 

L2, L3, L4 

11 To compute N- Point DFT of a given sequence using DSK 6713 simulator. 
 

L2, L3, L4 

12 To compute linear convolution of two given sequences using DSK 6713 
simulator 

L2, L3, L4 

13 
To compute circular convolution of two given sequences using DSK 6713 

simulator 

L2, L3, L4 

 

                                                                                                                        

 

 

 

 

 



  

Experiment – 1 

Aim:  Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum. 

Theory: In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of 

equally-spaced samples of a function into a same-length sequence of equally-spaced samples of 

the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. 

The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. 

An inverse DFT is a Fourier series, using the DTFT samples as coefficients 

of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as 

the original input sequence. The DFT is therefore said to be a frequency domain representation of 

the original input sequence. If the original sequence spans all the non-zero values of a function, its 

DTFT is continuous (and periodic), and the DFT provides discrete samples of one cycle. If the 

original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of 

one DTFT cycle. 

Example 

 

 

 



Code1:  

//    Computation of N point DFT 
clear ; 
clc ; 
close ; 
i=sqrt(-1) 
L=4; // Length of a sequence 
N=4; // N-Point DFT 
x=[1,2-i,-i,-1+2.*i]; 
// Computing DFT 
X=fft(x,-1) ; 
disp(X,'FFT of x[n] is X(k)=') 
mag=abs(X) 
// Plotting the spectrum 
subplot(2,1,1) 
a=gca(); 
a.data_bounds=[0,0;5,7]; 
plot2d3('gnn',0:length(mag)-1,mag) 
b=gce() ; 
b.children(1).thickness=3; 
xtitle('Graphical Representation of 
Amplitude','n','mag(X[k]'); 
phase=phasemag(X) 
subplot(2,1,2) 
a=gce(); 
a.data_bounds=[0,0;5,7]; 
plot2d3('gnn',0:length(XX)-1,XX) 
b=gce(); 
b.children(1).thickness=3; 
xtitle('Graphical Representation of phase','k','angle(X(k))') ; 
 

Output: 

  

     FFT of x[n] is X(k)=    

    2.  - 2. - 2.i  - 2.i    4. + 4.i   

 mag  = 

    2.    2.8284271    2.    5.6568542   

 phase  = 

    0.  - 135.  - 90.    45.   

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Experiment – 2 

Aim:  Computation of circular convolution of two given sequences and verification of 

commutative, distributive and associative property of convolution. 

Theory  
 

Circular Convolution 

The circular convolution, also known as cyclic convolution, of two aperiodic functions) occurs 

when one of them is convolved in the normal way with a periodic summation of the other 

function. That situation arises in the context of the Circular convolution theorem.  The identical 

operation can also be expressed in terms of the periodic summations  

of both functions, if the infinite integration interval is reduced to just one period.  That situation 

arises in the context of the discrete-time Fourier transform (DTFT) and is also called periodic 

convolution.   

Circular convolution of two sequences x1 and x2 is defined as 

  

 

 

The two sequences are             x1 (n) = {1,2}        and                   x2 (n) = {3,5,4} 

 

Each sequence consists of four nonzero points. For purpose of illustrating the operations involved 

in circular convolution it is desirable to graph each sequence as points on a circle. Thus the 

sequences x1 (n) and x2 (n) are graphed as illustrated in the fig. We note that the sequences are 

graphed in a counterclockwise direction on a circle. This establishes the reference direction in 

rotating one of sequences relative to the other. Now, y (m) is obtained by circularly convolving x 

(n) with h (n). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Code for Circular Convolution 

// Code for Circular Convolution 

clc ; 

function [c]=circpro(a,b) 

 x=[[a(1),a(4),a(3),a(2)] ; 

   [a(2),a(1),a(4),a(3)] ; 

   [a(3),a(2),a(1),a(4)] ;   

   [a(4),a(3),a(2),a(1)]] ;      

 c=x*b'; 

endfunction 

a = [1,2,0,0]; // First sequence 

b = [3,5,4,0]; // Second sequence 

m = length (a) ; // length of first sequence 

n = length (b) ; // length of second sequence 

       

C1=circpro(a,b);      

disp(C1','Circular Convolution using Matrix Method result ')   

 

Result: 

 

Circular Convolution using Matrix Method result     

    3.    11.    14.    8.   

 

Commutative Property: a             b=b           a 

 

// Commutative Property   

clc 

lhs=circpro(a,b);  

rhs=circpro(b,a);  

disp(lhs','LHS')    

disp(rhs','RHS')        

disp('Commutative Property is verified')      

Result: 

LHS    

    3.    11.    14.    8.   

 RHS    

    3.    11.    14.    8.   

 Commutative Property is verified  

 

 

 

 

 

 

* * 



 

Distributive Property  

a           (b+c)=a          b + a         c 

Code: 

// Distributive Property 

clc 

a = [1,2,0,0]; // First sequence 

b = [3,5,4,0]; // Second sequence 

c= [1,2,3,0]; // Third Sequence 

lhs=circpro(a,(b+c));  

rhs=(circpro(a,b)+ circpro(a,c));  

disp(lhs','LHS')    

disp(rhs','RHS')        

disp('Distributive Property is verified') 

Result: 

LHS    

    4.    15.    21.    14.   

 RHS    

    4.    15.    21.    14.   

 Distributive Property is verified    

 

Associativity Property : ( a         b)         c  =  a         (b              c ) 

// Associativity Property 

clc 

x1=circpro(a,b); 

lhs=circpro(x1',c); 

x2=circpro(b,c); 

rhs=circpro(a,x2');  

disp(lhs,'LHS')    

disp(rhs,'RHS')        

disp('Associativity Property is verified') 

 

 

 

 

 

 

 

 

 

 

* * * 

* * * * 



 

Experiment –3 

Aim:  Computation of linear convolution of two sequences using DFT and IDFT. 

Theory:  

The mathematical definition of convolution in discrete time domain 

 

 ( )   ( )   ( )  ∑  ( ) (   )

 

    

 

where x[n] is input signal, h(n) is called Impulse Response and y[n] is output 

convolution. Here we multiply the terms of x[k] by the terms of time-shifted h[n] and add them 

up. 

Here one of the input is shifted in time by a value every time it is multiplied with the other input 

signal. Linear Convolution is quite often used as a method of implementing filters of various 

types. 

 

Eg: Perform Linear convolution of  , -  *   ⃡    +  and  , -  * ⃡      + 
 

Tabular Column method 

 

 

 

 

 

 

 

 

 

 

         , -  *   ⃡           +   

The linear convolution of two sequences can be computed using the DFT (Discrete 

Fourier Transform) and IDFT (Inverse Discrete Fourier Transform) as follows: 

1. Compute the DFT of both sequences. 

2. Multiply the DFTs element-wise. 

3. Compute the inverse DFT of the result from step 2. 

4. The result of the inverse DFT is the convolution of the two sequences. 

Note: The length of the DFTs must be zero-padded to ensure that the result of the 

inverse DFT is the correct length. 

 

 

 

 

 

 



Code: 

//Computation of linear convolution 
clc 

// Input sequences 

x = [1,1,1,1]; 

y = [1,2,3,4];   

// Find the length of the result 

N = length(x) + length(y) - 1; 

// Zero-pad the sequences to length N 

x = [x, zeros(1, N-length(x))]; 

y = [y, zeros(1, N-length(y))]; 

// Compute the DFT of both sequences 

X = fft(x); 

Y = fft(y); 

// Multiply the DFTs element-wise 

Z = X .* Y; 

// Compute the inverse DFT 

z = ifft(Z); 

// Round the result to remove any imaginary parts 

z = round(real(z)); 

// Display the result 

disp(z,' Linear Convolution Output'); 

 

Output: 

Linear Convolution Output    

    1.    3.    6.    10.    9.    7.    4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Experiment –4 

Aim: Computation of circular convolution of two given sequences using DFT and IDFT 

Theory: 

Circular convolution of two sequences x and y is computed as follows using DFT and 

IDFT: 

1. Compute the DFT of both sequences x and y, resulting in X and Y respectively. 

2. Multiply element-wise X and Y to get Z. 

3. Compute the IDFT of Z to obtain the circular convolution of x and y. 

Note: The length of the sequences must be equal and a power of 2 for efficient 

computation using the fast Fourier transform (FFT) algorithm. 

 

 

Code: 

// Circular convolution 
clc ; 
L=4; // Length of the Sequence 
N=4; // N −p o i n t DFT 
x=[1,2,0,0]; 
h=[3,5,4,0]; 
// Computing DFT 
X1=fft(x ,-1) ; 
X2=fft(h ,-1) ; 
// M u l t i p l i c a t i o n of 2 DFTs 
X3=X1.*X2 ; 
// 'Circular Convolution Result  
x3=abs(fft(X3,1) ); 
disp ( x3 ,'Circular Convolution Result') 

 

Output: Circular Convolution Result    

    3.    11.    14.    8. 

 

 

 



 

Experiment –5 

Aim:  Verification of Linearity property, circular time shift property & circular frequency shift property of 
DFT. 
 
Proof : 
 

a) Linearity property 
 

The linearity property of the discrete Fourier transform (DFT) states that: 

For any two sequences x and y, and any two scalars a and b, the DFT of the 

sequence (ax + by) is equal to (aX) + (bY), where X and Y are the DFTs of x and y, 

respectively. 

Mathematically, it can be expressed as: 

DFT(ax + by) = aDFT(x) + bDFT(y) 

This property makes the DFT a useful tool for analyzing and processing linear 

systems. 
 

 
 
 

b) Circular Time Shift Property 
 

The circular time shift property of the discrete Fourier transform (DFT) states that: 

For any sequence x of length N, and an integer k such that 0 <= k < N, the DFT of 

the circularly shifted sequence x_shift, where x_shift[n] = x[(n-k) mod N], is equal 

to the element-wise multiplication of the DFT of x by a complex exponential 

sequence. 

Mathematically, it can be expressed as: 

DFT(x_shift) = DFT(x) * exp(-j * 2 * π * k * n / N) 

where j is the imaginary unit, π is the mathematical constant pi, and * represents 

element-wise multiplication. 

This property makes the DFT a useful tool for analyzing and processing signals 

that have undergone circular time shifts. 
 

 
 



 
 
 

c) circular frequency shift property 
 

The circular frequency shift property of the discrete Fourier transform (DFT) states that: 

For any sequence x of length N, and an integer k such that 0 <= k < N, the inverse DFT 

(IDFT) of the element-wise multiplication of the DFT of x by a complex exponential 

sequence, is equal to the circularly shifted sequence x_shift, where x_shift[n] = x[(n+k) 

mod N]. 

Mathematically, it can be expressed as: 

IDFT(DFT(x) * exp(j * 2 * π * k * n / N)) = x_shift 

where j is the imaginary unit, π is the mathematical constant pi, and * represents 

element-wise multiplication. 

This property makes the DFT a useful tool for analyzing and processing signals that have 

undergone circular frequency shifts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Linearity: 
 
// Linearity Property 
clc 
// Define the two sequences x and y 
x = [1, 2, 3, 4]; 
y = [5, 6, 7, 8]; 
// Define the scalars a and b 
a = 2; 
b = 3; 
// Compute the DFT of x and y using the fft 
function 
X = fft(x); 
Y = fft(y); 
// Verify the linearity property 
z = a * x + b * y; 
Z = fft(z); 
disp("DFT of (ax + by):"); 
disp(Z); 
Y=a*fft(x)+b*fft(y); 
disp("aDFT(x) + bDFT(y):"); 
disp(Y); 
 
Output: 
 
DFT of (ax + by):    
    98.  - 10. + 10.i  - 10.  - 10. - 10.i   
 
 aDFT(x) + bDFT(y):    
    98.  - 10. + 10.i  - 10.  - 10. - 10.i   
 
Circular Time Shift Property 
 
// Circular Time Shift Property 
clc; 
x = [1, 2, 3, 4, 5]; 
// Apply a circular time shift to the signal 
y = circshift(x, 2); 
// Verify the circular time shift property 
N = length(x); 
X = fft(x); 
Y = fft(y); 
for k=0:N-1 
  phase = exp(-%i*2*%pi*k*2/N); 
  disp( X(k+1)*phase ,Y(k+1), ); 
end 
 
Output: 
15. + 0.i 
 15. 
 4.045085 - 1.3143278i 
 4.045085 - 1.3143278i 
 -1.545085 - 2.126627i 
 -1.545085 - 2.126627i 
 -1.545085 + 2.126627i 
  -1.545085 + 2.126627i 
 
 
 
 
 
 
 
 
 
 



 
 
Circular Frequency Shift Property 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Output: 
 
  "lhs" 
   2.6286556   4.253254   15.   4.253254   2.6286556 
  "rhs" 
   15.   4.253254   2.6286556   2.6286556   4.253254 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// Circular Frequency Shift Property 
clc 
x = [1, 2, 3, 4, 5]; 
y = (abs(fft(x))); 
shift=3; 
d1=[0 0 0 0 0] 
N = length(x); 
for k=0:N-1 
phase = exp(-%i*2*%pi*k*shift/N); 
d1(k+1)= x(k+1).*phase 
end 
disp('lhs',abs(fft(d1))) 
disp('rhs',y) 



 
 

Experiment –6 

Aim:  Verification of Parseval’s  Theorem. 
 

Parseval’s Theorem 

 

 

 

 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

Output:   
 
  "LHS"  :     8. + 3.i              

 

  "RHS" :     8. + 3.i 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// Verification of parseval’s Theorem 
clc 
N = 4; 
x =[1  %i 1-%i -1+%i] 
g = [2  2-%i 3 4*%i] 
X = fft(x); 
G = fft(g); 
lhs=sum(x.*conj(g)) 
rhs=sum(X.*conj(G))/N 
disp('LHS',lhs) 
disp('RHS',rhs) 
 



Experiment –7 

Aim: Design and implementation of IIR filter ( Low pass and High Pass)  to meet given specifications. 

Theory: 

IIR vs. FIR Filters 

 

 

 

 

 

 

 

Classical IIR Filters 

The classical IIR filters, Butterworth, Chebyshev Types I and II, elliptic, and Bessel, all 

approximate the ideal “brick wall” filter in different ways. 

This toolbox provides functions to create all these types of classical IIR filters in both the analog 

and digital domains (except Bessel, for which only the analog case is supported), and in lowpass, 

highpass, bandpass, and bandstop configurations. For most filter types, you can also find the 

lowest filter order that fits a given filter specification in terms of passband and stopband 
attenuation, and transition width(s). 

Filter Method Description 

Analog Prototyping Using the poles and zeros of a classical lowpass prototype filter  

Direct Design Design digital filter directly in the discrete time-domain by 

approximating a piecewise linear magnitude response 

Generalized Butterworth 

Design 

Design lowpass Butterworth filters with more zeros than poles. 

Parametric Modeling Find a digital filter that approximates a prescribed time or frequency 

domain response.  



 

 

 

 

 

 

 

 

 

 

 

 

// Lowpass Butterworth Filter  (IIR) 

clc; 

close; 

clf; 

hz=iir(3,'lp','butt',[.1  .3],[.08 .03]); 

[hzm,fr]=frmag(hz,256); 

plot2d(fr',hzm') 

xtitle('Discrete IIR filter: Low pass  0.1  < fr < 0.3 ',' ',' '); 

q=poly(0,'q');     //to express the result in terms of the 

delay operator q=z^-1 

hzd=horner(hz,1/q) 

 

 

 

 

 



 

 

// Evaluate magnitude response of the Low Pass FIR filter 
fcut = 5; //hz 
n = 7; // Filter order 
hc1 = analpf(n, 'cheb1', [0.1 0], fcut*2*%pi); 
hb = analpf(n, 'butt', [0 0], fcut*2*%pi); 
hc1.dt = 'c'; 
hb.dt = 'c'; 
clf(); 
[fr, hf] = repfreq(hc1, 0, 15); 
plot(fr, abs(hf), 'b') 
[fr, hf] = repfreq(hb, 0, 15); 
plot(fr, abs(hf), 'c') 
 
legend(["Chebyshev I","Butterworth"]); 
xgrid() 
xlabel("Frequency (Hz)") 
ylabel("Gain") 
title("Analog filters of order 7") 
 

 

 

 

// Highpass Butterworth Filter  (IIR) 
clc; 

close; 

clf; 

hz=iir(3,'hp','butt',[.1  .3],[.08 .03]); 

[hzm,fr]=frmag(hz,256); 

plot2d(fr',hzm') 

xtitle('Discrete IIR filter: High pass  0.1  < fr < 0.3 ',' ',' '); 

q=poly(0,'q');     //to express the result in terms of the delay operator q=z^-1 

hzd=horner(hz,1/q) 

 

 

https://help.scilab.org/doc/6.0.0/en_US/clf.html
https://help.scilab.org/doc/6.0.0/en_US/repfreq.html
https://help.scilab.org/doc/6.0.0/en_US/plot.html
https://help.scilab.org/doc/6.0.0/en_US/abs.html
https://help.scilab.org/doc/6.0.0/en_US/repfreq.html
https://help.scilab.org/doc/6.0.0/en_US/plot.html
https://help.scilab.org/doc/6.0.0/en_US/abs.html
https://help.scilab.org/doc/6.0.0/en_US/legend.html
https://help.scilab.org/doc/6.0.0/en_US/xgrid.html
https://help.scilab.org/doc/6.0.0/en_US/xlabel.html
https://help.scilab.org/doc/6.0.0/en_US/xlabel.html#ylabel
https://help.scilab.org/doc/6.0.0/en_US/title.html


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

// High pass FIR Filter  

fcut = 1; //hz 

n = 1; // Filter order 

hc1 = 1-analpf(n, 'cheb1', [0.1 0], fcut*2*%pi); 

hb = 1-analpf(n, 'butt', [0 0], fcut*2*%pi); 

hc1.dt = 'c'; 

hb.dt = 'c'; 

clf(); 

[fr, hf] = repfreq(hc1, 0, 15); 

plot(fr, abs(hf), 'b') 

[fr, hf] = repfreq(hb, 0, 15); 

plot(fr, abs(hf), 'r') 

legend(["Chebyshev I", "Butterworth"]); 

xgrid() 

xlabel("Frequency (Hz)") 

ylabel("Gain") 

title("High Pass Filter") 

 

 



 

EXPERIMENTS TO BE DONE USING DSP KIT 

Introduction of main board: 

1. USB2.0 CY7C68013-56PVC, compatible with USB2.0 and USB1.1, including 8051 

2. DSP TMS320C6713 TQFP-208 Package Device with, 4 layers board 

3. SDRAM MT48LC4M16A2 1meg*16 *4 bank micron 

4. FLASH AM29LV800B 8Mbit1Mbyte of AMD 

5. RESET chip specialize for reset with button for manually reset 

6. POWER power supply externally, special 5V, 3.3V, 1.6V chip for steady voltage 

with remaining for other devices. 

7. EEPROM 24LC64 for download of USB firmware 

8. CPLD XC95144XL 

9. AIC TLV320AIC23B sampling with 8-96KHZ, 4 channels with interface of 

headphone. 

 

 

 

 

 

 

 

 

The setup of USB Programmer and emulator in CCS v3.3 

 
1. Install CCS v3.3 software according to the default Custom Install. 

2. Install USB Emulator chooses to install directory from CCS v3.3 hat is if CCSv3.3 

is installed in C: / CCStudio_v3.3 directory, then install the USB emulator driver in 

this directory. 

Procedure to Setup Emulator: 

1. Open the “Setup CCStudio v3.3” 

 
 



2. Choose c67xx in the “Family”. 

 

 

 

3. Choose AHxds510usb emulator in the “Platform”. 

 

 
4. Choose little in the “Endianness”. 

 

 
 

5.  Now you are left with two options under Available Factory Boards, Choose 

C671X AHXDS510 USB Emulator, right click and “Add to system…” 

 

 
 

6 . Now the Emulator and the processor both are selected under “system 

configuration”. 

 

 
7.  Choose file and click on “save”. 

 

8.  Choose file and click on “exit” you will get a wizard as shown bellow 

 



 

Click on yes. 

 

Then it launches a Code Composer Studio 

 

1. Connect the power supply to the board (5V, 3A): make sure that supply is there in the 

board by pressing reset button. 

 

 
 

2. After 2 minutes after power supply is turned on then connects the USB 

Programmer cable to DSP JTAG connector and Host Computer where CCS 

3.3 is installed. 

 

 



12. Go to Debug and select the Reset Emulator 

 

 
 

13. Go to Debug and select the option connect by Pressing Reset Button on the board 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14. Now Target is connected 

 

 
 



15 Go to Debug and press Reset CPU that will initialize your memory. 

 

 
 

After Pressing Reset the CPU following window should appear in CCS. 

 

 
 

 

Now Board is ready for working real and non real time programs. 

 

 

 

 

 

 

 

 

 

 

 



 

Experiment 1:   To compute N- Point DFT of a given sequence using DSK 6713 
simulator. 
 
Procedure to create new Project: 

1. To create project, Go to Project and Select New. 

 

 

 

 

 

 

 

 

 

 

 

 

2. Give project name and click on finish. 

 

 

 

 

 

 

 

 

 

( Note: Location must be c:\CCStudio_v3.3\MyProjects ). 

3. Click on File New Source File, To write the Source Code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

C Code: 

 
#include<stdio.h>   

#include<math.h>   

void main()   

{   

short N = 4;   

short x[4] = {1,2,3,4}; // test data  

float pi = 3.1416;   

float sumRe = 0, sumIm = 0; // init real/imag components   

float cosine = 0, sine = 0; // Initialise cosine/sine components   

// Output Real and Imaginary components   

float out_real[4] = {0.0}, out_imag[4] = {0.0}; int n = 0, k = 0;   

for(k=0 ; k<N ; k++)   

{   

sumRe = 0;   

sumIm = 0;   

for (n=0; n<N ; n++)   

{   

cosine = cos(2*pi*k*n/N);   

sine = sin(2*pi*k*n/N); 

sumRe = sumRe + x[n] * cosine;   

sumIm = sumIm - x[n] * sine;  }   

out_real[k] = sumRe;   

out_imag[k] = sumIm;   

printf("[%d] %f +j %f \n", k, out_real[k], out_imag[k]); 

} 

} 

Output : [0] 10.000000 +j 0.000000  

[1] -1.999963 +j 2.000022  

[2] -2.000000 +j 0.000059  

[3] -2.000108 +j -1.999934 

 

 
1. Enter the source code and save the file with “.C” extension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Right click on source, Select add files to project .. and Choose “.C “ file Saved before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Right Click on libraries and select add files to project and choose 

C:\CCStudio_v3.3\C6000\cgtools\lib\rts6700.lib and click open. 

 

 

   

 

 

 

 
 

4. Go to file and load program and load “.out” file into the board.. 

 

 

 

 

 

5. Go to Debug and click on run to run the program. 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. a) Go to Project to Compile . 

b) Go to Project to Build. 

c) Go to Project to Rebuild All. 

 

 

 

 

 

 

 

 

7. Observe the output in output window. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Experiment 2:   To compute Linear Convolution of two given sequence using 
DSK 6713 simulator. 
 

Linear Convolution 
Procedure to create new Project: 

1. To create project, Go to Project and Select New. 

 

2. Give project name and click on finish. 

 

 

 

 

 

(Note: Location must be c:\CCStudio_v3.3\MyProjects). 

3. Click on File -New Source- File, To write the Source Code. 

 

 

 

 

 

 

 

 

 

 

 



Program: 

#include<stdio.h> 
main() 
{ int m=4; /*Lenght of i/p samples sequence*/ 
int n=4; /*Lenght of impulse response Co-efficients */ 
int i=0,j; 
int x[10]={1,2,3,4,0,0,0,0}; /*Input Signal Samples*/ 
int h[10]={1,2,3,4,0,0,0,0}; /*Impulse Response Co-efficients*/ 
/*At the end of input sequences pad ‘M’ and ‘N’ no. of zero’s*/ 
int y[10]; 
printf("Linear Convolution Result: "); 
for(i=0;i<m+n-1;i++) 
{ y[i]=0; 
for(j=0;j<=i;j++) 
y[i]+=x[j]*h[i-j]; 
} 
for(i=0;i<m+n-1;i++) 
printf(" %d\t",y[i]); 
} 

 

Result: 

 

Linear Convolution Result:  1  4  10  20  25  24  16  

 

4. Enter the source code and save the file with “.C” extension. 

 

 

5. Right click on source, Select add files to project .. and Choose “.C “ file Saved before. 

 

 

 

 

 

 

 

 

 

 



6. Right Click on libraries and select add files to Project.. and choose 

C:\CCStudio_v3.3\C6000\cgtools\lib\rts6700.lib and click open. 

 

  

 

 

 

 

 

 

 

 

 

7. a)Go to Project to Compile . 

    b) Go to Project to Build. 

    c) Go to Project to Rebuild All. 

 

 

 

 

 

 

 

 

 

8. Go to file and load program and load “.out” file into the board. 

 

 
 

9. Go to Debug and click on run to run the program. 

 

 

 

 

 

 

 

 

 



 

 

10. Observe the output in output window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Experiment 3:   To compute Circular  Convolution of two given sequence using 
DSK 6713 simulator. 
 
Procedure to create new Project: 

1. To create project, go to Project and Select New. 

 

 

 

 

 

 

 

2. Give project name and click on finish. 

 

 

 

 

 

 

 

 

 

( Note: Location must be c:\CCStudio_v3.3\MyProjects ). 

 

3. Click on File New --> Source File, to write the Source Code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Program: 
#include<stdio.h> 
int m,n,x[30],h[30],y[30],i,j,temp[30],k,x2[30],a[30]; 
void main() 
{ 
printf(" enter the length of the first sequence\n"); 
scanf("%d",&m); 
printf(" enter the length of the second sequence\n"); 
scanf("%d",&n); 
printf(" enter the first sequence\n"); 
for(i=0;i<m;i++) 
scanf("%d",&x[i]); 
printf(" enter the second sequence\n"); 
for(j=0;j<n;j++) 
scanf("%d",&h[j]); 
if(m-n!=0) /*If length of both sequences are not equal*/ 
{ 
if(m>n) /* Pad the smaller sequence with zero*/ 
{ 
for(i=n;i<m;i++) 
h[i]=0; 
n=m; 
} 
for(i=m;i<n;i++) 
x[i]=0; 
m=n; 
} y[0]=0; 
a[0]=h[0]; 
for(j=1;j<n;j++) /*folding h(n) to h(-n)*/ 
a[j]=h[n-j]; 
/*Circular convolution*/ 
for(i=0;i<n;i++) 
y[0]+=x[i]*a[i]; 
for(k=1;k<n;k++) 
{ 
y[k]=0; 
/*circular shift*/ 
for(j=1;j<n;j++) 
x2[j]=a[j-1]; 
x2[0]=a[n-1]; 
for(i=0;i<n;i++) 
{ a[i]=x2[i]; 
y[k]+=x[i]*x2[i]; 
} 
} 
/*displaying the result*/ 
printf(" the circular convolution is\n"); 
for(i=0;i<n;i++) 
printf("%d \t",y[i]); 
} 

 
Output: 

enter the length of the first sequence 

4 

enter the length of the second sequence 

4 

enter the first sequence 

4 3 2 1 

enter the second sequence 

1 1 1 1 

the circular convolution is 

10 10 10 10 



 Enter the source code and save the file with “.C” extension. 

 
 

4. Right click on source, Select add files to project .. and Choose “.C “ file Saved before. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Right click on source, Select add files to project .. and Choose “.C “ file Saved before. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

6. Right Click on libraries and select add files to Project.. and choose 

C:\CCStudio_v3.3\C6000\cgtools\lib\rts6700.lib and click open. 

 

 

7. a) Go to Project to Compile . 

    b) Go to Project to Build. 

    c) Go to Project to Rebuild All. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8. Go to file and load program and load “.out” file into the board. 

 

 

 

 

 

 

 

9. Go to Debug and click on run to run the program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. Enter the input data to calculate the circular convolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The corresponding output will be shown on the output window as shown below 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Digital Signal Processing LAB VIVA Questions 

 (21EC42) 

1) Mention basic blocks of DSP and DSP Applications 

2) Mention advantages and disadvantages of DSP 

3) Discuss the effect of undersampling for the given signal 

4) Discuss the effect of Nyquist sampling for the given signal 

5) Discuss the effect of oversampling for the given signal. 

6) Define Linear Convolution 

7) Define Circular convolution 

8) Explain how Circular convolution is performed using Linear Convolution 

9)  Define Autocorrelation of Signal 

10)  Define Cross-correlation of two signal 

11)  Explain properties of Correlation. 

12)  Obtain the circular convolution of the following sequences x(n) = {1,2,1}; h(n) = {1, -2,2} 

13) Define DFT and IDFT 

14) How many multiplications and additions are required to compute N –point DFT using 

radix – 2 FFT? 

15) Distinguish between DFT and DTFT? 

16) What is zero padding? What are its uses? 

17) What is twiddle factor? 

18) What is meant by in – place computation? 

19) What are the differences and similarities between DIT and DIF. 

20) Distinguish between linear convolution and circular convolution? 

21)  What are the differences between Overlap – add and Overlap – save method? 

22)  State the properties of DFT? 

23) How will you perform linear convolution using circular convolution? 

24) Find the circular convolution of x(n) = {1,2,3,4} with h(n) = {1,1,2,2}? 

25) State Parseval’s relation with respect to DFT? 

26) Explain Radix – 2 DIF FFT algorithm. Compare it with DIT – FFT algorithms. 

 

27)  Compute the linear convolution of finite duration sequences h(n) = {1,2} and x(n) = {1, 

2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1} by Overlap add method? 
 

28) Perform the linear convolution of the sequence x(n) = {1, -1, 1, -1} and h(n) = {1,2,3,4} using 

DFT method 

29) Compare Butterworth with Chebyshev filters? 

30) What is known as pre warping in digital filters? 

31)  List the properties of Chebyshev filter? 



32)  Draw the direct form structure of IIR filter? 

33)  Why do we go for analog approximation to design a digital filter? 

34)  What is the advantage of direct form II realization when compared to direct form I 

realization? 

35)  Why the Butterworth response is called a maximally flat response? 

36) . Mention the advantages of cascade realization? 

37) Write the properties of Butterworth filter? 

38)  What is bilinear transformation? 

39) What are the advantages and disadvantages of bilinear transformation? 

40)  Distinguish between recursive realization and non recursive realization? 

41)  What is meant by impulse invariance method of designing IIR filter? 

42)  Give the expression for location of poles of normalized Butterworth filter? 

43)  What are the parameters that can be obtained from Chebyshev filter specification? 

44) Explain the procedure for designing analog filters using the Chebyshev approximation. 

45) What are advantages and disadvantages of FIR filter? 

46) What is the reason that FIR filter is always stable? 

47) State the condition for a digital filter to be causal and stable? 

48) Compare Hamming window with Kaiser window. 

49) What is the principle of designing FIR filter using frequency sampling method? 

50) What is window and why it is necessary? 

 
 
 
 
 
 
 
 
 
 
 


