2025-26

SJCINSTITUTE OF TECHNOLOGY,CHICKBALLAPUR

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

VISION OF THE INSTITUTE

Preparing Competent Engineering and Management Professionals to Serve the Society

MISSION OF THE INSTITUTE

M1: Providing Students with a Sound Knowledge in Fundamentals of their branch of Study
M2: Promoting Excellence in Teaching, Training, Research and Consultancy.

M3: Exposing Students to Emerging Frontiers in various domains enabling Continuous
Learning.

M4: Developing Entrepreneurial acumen to venture into Innovative areas.

M5: Imparting Value based Professional Education with a sense of Social Responsibility.

VISION OF THE DEPARTMENT

Transforming Individuals into Competent Electronics and Communication Engineers for
Technological & Societal advancements.

MISSION OF THE DEPARTMENT

M1: Imparting fundamental knowledge in ECE for Academic and Professional Excellence.

M2: Empowering faculty and students through Research and Exploration in Emerging
Technologies.

M3: Fostering Industry- Institute synergy to advance cutting-edge technological
understanding and Entrepreneurial spirit.

M4: Equipping students with technical skills and ethical values to develop innovative
solutions for societal needs.

M5: Nurturing Lifelong Learning through a supportive environment and continuous learning
opportunities.

DEPT. OF ECE, SJCIT i

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates of the Program will have Successful Technical and Professional Career
in Engineering, Technology and Multidisciplinary Environments.

PEO2: Graduates of the Program will utilize their Knowledge, Technical and
Communication Skills to Propose Optimal Solutions to Problems Related to
Society in the Field of Electronics and Communication.

PEO3: Graduates of the Program will Exhibit Good Interpersonal Skills, Leadership
Qualities and adapt themselves for Lifelong Learning

PROGRAMME SPECIFIC OUTCOMES (PSOs)

At the end of the program students will have

PSO1: Ability to Absorb and Apply Fundamental Knowledge of Core Electronics and
Communication Engineering in the Analysis, Design and Development of
Electronics Systems as well as to Interpret and Synthesize Experimental Data
Leading to Valid Conclusions

PSO2: Ability to Solve Complex Electronics and Communication Engineering Problems,
using latest Hardware and Software Tools, along with Analytical and Managerial
Skills to arrive at appropriate Solutions, either Independently or in Team

DEPT. OF ECE, SJCIT iii

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

PROGRAM OUTCOMES

Engineering Graduates will be able to:

1.

10.

11.

Engineering Knowledge: Apply knowledge of mathematics, natural science,
computing, engineering fundamentals and an engineering specialization as specified in
WK1 to WK4 respectively to develop to the solution of complex engineering problems.

Problem Analysis: Identify, formulate, review research literature and analyze complex
engineering problems reaching substantiated conclusions with consideration for
sustainable development. (WK1 to WK4)

Design/Development of Solutions: Design creative solutions for complex engineering
problems and design/develop systems/components/processes to meet identified needs
with consideration for the public health and safety, whole-life cost, net zero carbon,
culture, society and environment as required. (WKS5)

Conduct Investigations of Complex Problems: Conduct investigations of complex
engineering problems wusing research-based knowledge including design of
experiments, modelling, analysis & interpretation of data to provide valid conclusions.
(WKS).

Engineering Tool Usage: Create, select and apply appropriate techniques, resources
and modern engineering & IT tools, including prediction and modelling recognizing
their limitations to solve complex engineering problems. (WK2 and WKG6)

The Engineer and The World: Analyze and evaluate societal and environmental
aspects while solving complex engineering problems for its impact on sustainability
with reference to economy, health, safety, legal framework, culture and environment.
(WK1, WK5, and WK7).

Ethics: Apply ethical principles and commit to professional ethics, human values,
diversity and inclusion; adhere to national & international laws. (WK?9)

Individual and Collaborative Team work: Function effectively as an individual, and
as a member or leader in diverse/multi-disciplinary teams.

Communication: Communicate effectively and inclusively within the engineering

Project Management and Finance: Apply knowledge and understanding of
engineering management principles and economic decision-making and apply these to
one’s own work, as a member and leader in a team, and to manage projects and in
multidisciplinary environments.

Life-Long Learning: Recognize the need for, and have the preparation and ability for
i) independent and life-long learning ii) adaptability to new and emerging technologies
and iii) critical thinking in the broadest context of technological change. (WK8)

DEPT. OF ECE, SJCIT iv

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

WK1:

WK2:

WKaS:

WK4:

WKS5:

WKE6:

WKY:

WKS:

WKO:

A systematic, theory-based understanding of the natural sciences applicable to the
discipline and awareness of relevant social sciences.

Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal
aspects of computer and information science to support detailed analysis and modelling
applicable to the discipline.

A systematic, theory-based formulation of engineering fundamentals required in the
engineering discipline.

Engineering specialist knowledge that provides theoretical frameworks and bodies of
knowledge for the accepted practice areas in the engineering discipline; much is at the
forefront of the discipline.

Knowledge, including efficient resource use, environmental impacts, whole-life cost,
reuse of resources, net zero carbon, and similar concepts, that supports engineering design
and operations in a practice area

Knowledge of engineering practice (technology) in the practice areas in the engineering
discipline.

Knowledge of the role of engineering in society and identified issues in engineering
practice in the discipline, such as the professional responsibility of an engineer to public
safety and sustainable development.

Engagement with selected knowledge in the current research literature of the discipline,
awareness of the power of critical thinking and creative approaches to evaluate emerging
issues.

Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities,
and norms of engineering practice. Awareness of the need for diversity by reason of
ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of
inclusive attitudes.

DEPT. OF ECE, SJCIT \Y

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6
INDEX
Sl No.| Description Page No.
1 Course syllabus vi
2 Course Outcomes vii
3 Laboratory Rubrics viii
PART - A
Simulation experiments using NS2/ NS3/ OPNET/ NCTUNS/ NetSim/
QualNet/ Packet Tracer or any other equivalent tool
Implement a point to pint network with four nodes and duplex links
1 between them. Analyze the network performance by setting the queue size
and varying the bandwidth.
Implement a four node point to point network with links n0-n2, n1-n2 and
2 n2-n3. Apply TCP agent between n0-n3 and UDP between n1-n3. Apply
relevant applications over TCP and UDP agents changing the parameter
and determine the number of packets sent by TCP/UDP.
3 Implement Ethernet LAN using n (6-10) nodes. Compare the throughput
by changing the error rate and data rate.
4 Implement Ethernet LAN using n nodes and assign multiple traffic to the
nodes and obtain congestion window for different sources/ destinations.
5 Implement ESS with transmission nodes in Wireless LAN and obtain the
performance parameters.
6 Implementation of Link state routing algorithm
PART -B
Implement the following in C/C++
Write a program for a HLDC frame to perform the following.
1) Bit stuffing
i) Character stuffing.
9 Write a program for distance vector algorithm to find suitable path for
transmission.
3 Implement Dijkstra’s algorithm to compute the shortest routing path.
For the given data, use CRC-CCITT polynomial to obtain CRC code.
4 Verify the program for the cases
a. Without error
b. With error
5 Implementation of Stop and Wait Protocol and Sliding Window Protocol
6 Write a program for congestion control using leaky bucket algorithm.
About NS2 and Dev C++
1 NETWORK SIMULATOR 2 (NS2)
2 DEV C++ EDITOR

DEPT. OF ECE, SJCIT

vi

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

COURSE SYLLABUS

PART-A: Simulation experiments using NS2/ NS3/ OPNET/ NCTUNS/ NetSim/

wmn

o1

QualNet/ Packet Tracer or any other equivalent tool

Implement a point to pint network with four nodes and duplex links between them.
Analyze the network performance by setting the queue size and varying the
bandwidth.

Implement a four node point to point network with links n0-n2, n1-n2 and n2-n3.
Apply TCP agent between n0-n3 and UDP between nl-n3. Apply relevant
applications over TCP and UDP agents changing the parameter and determine the
number of packets sent by TCP/UDP.

Implement Ethernet LAN using n (6-10) nodes. Compare the throughput by changing
the error rate and data rate.

Implement Ethernet LAN using n nodes and assign multiple traffic to the nodes and
obtain congestion window for different sources/ destinations.

Implement ESS with transmission nodes in Wireless LAN and obtain the performance
parameters.

Implementation of Link state routing algorithm

PART-B: Implement the following in C/C++

Write a program for a HLDC frame to perform the following.
1) Bit stuffing
i) Character stuffing.
Write a program for distance vector algorithm to find suitable path for transmission.
Implement Dijkstra’s algorithm to compute the shortest routing path.
For the given data, use CRC-CCITT polynomial to obtain CRC code. Verify the
program for the cases
a. Without error
b. With error
Implementation of Stop and Wait Protocol and Sliding Window Protocol
Write a program for congestion control using leaky bucket algorithm.

-]
DEPT. OF ECE, SJCIT vii

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

COURSE OUTCOME

At the end of the course, the students will have the ability to:

CO1 Use the simulator for learning and practice of networking algorithms

CO?2 Illustrate _the operations of network protocols and algorithms using C
Programming

CO3 Simulate the network with different configurations to measure the performance
parameters

CO4 Implement the data link and routing protocols using C programming

CO-PO MAPPING

PO1 | PO2 | PO3 | PO4 | POS5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11
CO1 2 3 1 3 1
COo2 2 3 3 1 3 1 1 1
CO3 2 3 3 3 1 1
CO4 2 3 3 3 1 1
AVERAGE | 2 3 3 3 3 1 1 1
CO-PSO MAPPING
CO PSO1 PSO2
Co1 3 2
COo2 3 2
CO3 3 1
CO4 3 3
AVERAGE 3 2

DEPT. OF ECE, SJCIT viii

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

LABORATORY RUBRICS

Sl MARKS
DESCRIPTION
No.
CONTINUOUS EVALUATION 25.0
a. Observation write up & punctuality 5.0
1 b. Conduction of experiment and output 8.0
¢ Viva voce 4.0
d. Record write up 8.0
2. INTERNAL TEST 15.0

-]
DEPT. OF ECE, SJCIT ix

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

1.

set
set
Sns

set
Sns

PART-A: Simulation Experiments using NS2

Implement a point to point network with four nodes and
duplex links between them. Analyze the network performance
by setting the queue size and varying the bandwidth.

ns [new Simulator]

f [open labl.tr w]

trace-all $f

nf [open labl.nam w]
namtrace-all S$Snf

proc finish {} {

}

set
set
set
set

global f nf ns

Sns flush-trace
close S$f

close S$nf

exec nam labl.nam &

exit O
n0 [$Sns node]
nl [$ns node]
n2 [$ns node]
n3 [$Sns node]

$ns duplex-link $n0 $n1 0.3Mb 10ms DropTail #vary bandwidth 0.3, 0.4, 0.5 0.7
$ns duplex-link $n1 $n2 0.3Mb 20ms DropTail #vary bandwidth 0.3, 0.4, 0.5 0.7
$ns duplex-link $n2 $n3 0.3Mb 20ms DropTail #vary bandwidth 0.3, 0.4, 0.5 0.7

Sns
Sns
Sns

set
Sns
set

queue-limit $n0 $nl 20
queue-limit $nl $n2 20
queue-limit $n2 $n3 20

udpO0 [new Agent/UDP]
attach-agent $n0 SudpO
cbr0 [new Application/Traffic/CBR]

Scbr0 attach-agent Sudp0
$cbr0 set packetSize 500
$cbr0 set interval 0.005

set
Sns

Sns

Sns
Sns
Sns
Sns

null0 [new Agent/Null]
attach-agent $n3 $null0

connect $udp0 SnullO

at 0.1 "S$cbr0 start"
at 4.5 "Scbr0 stop"
at 5.0 "finish"

run

DEPT. OF ECE, SJCIT 1

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

Steps for execution:

>

>
>

Y VYV

>

Open gedit editor and type program. Program name should have the extension “ .tcl

[root@localhost ~]# gedit labl.tcl
Save the program and quit.
Run the simulation program
[root@localhost~]# ns labl.tcl
Here “ns” indicates network simulator. We get the topology shown in the network
animator. Now press the play button in the simulation window and the simulation will
begins.
To calculate the network performance. Execute the following command.
For calculating number of received packets
[root@localhost~]#grep ~r labl.tr | grep “cbr” | awk ‘{s+=$6}END{print s}’
For calculating total time
[root@localhost~]#grep ~r labl.tr | grep “cbr” | awk “{st+=$2}END{print s}’

Network performace = (Packet received/ Total Time) (bps)

Write the value of network performance in observation sheet. Repeat the above step
by changing the bandwidth to [0.3Mb, 0.4Mb, 0.5Mb, 0.7Mb]to the following line of
the program.

$ns duplex-link $n0 $n1 0.7Mb 10ms DropTail #vary bandwidth 0.3, 0.4, 0.5 0.7
$ns duplex-link $n1 $n2 0.7Mb 20ms DropTail #vary bandwidth 0.3, 0.4, 0.5 0.7
$ns duplex-link $n2 $n3 0.7Mb 20ms DropTail #vary bandwidth 0.3, 0.4, 0.5 0.7

Sl. | Bandwidth | Network performance
No.

1. 0.3

2. 0.4

3. 0.5

4 0.7

Plot a graph with x- axis with bandwidth and y-axis with network performance of
UDP protocol.

DEPT. OF ECE, SJCIT 2

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

set

set
Sns

set
Sns

Sns
Sns

pro

}

set
set
set
set

Sns
Sns
Sns

Sns

set
Sns
Stc

set
Sft

set
Sns
Sns

set
Sns
Sud

Implement a four node point to point network with links nO-
n2, nl-n2 and n2-n3. Apply TCP agent between n0-n3 and UDP
between nl-n3. Apply relevant applications over TCP and UDP
agents changing the parameter and determine the number of
packets sent by TCP/UDP.

ns [new Simulator]

f [open lab2.tr w]
trace-all S$f

nf [open lab2.nam w]
namtrace-all S$Snf

color 1 "Blue"
color 2 "Red"

c finish {} {
global ns f nf
Sns flush-trace
close S$f
close $nf
exec nam lab2.nam &
exit O

n0 []
nl [$ns node]
n2 []
n3 []

duplex-1link $n0 $n2 2Mb 10ms DropTail
duplex-1link Snl $n2 2Mb 10ms DropTail
duplex-1link $n2 $n3 2.75Mb 20ms DropTail

queue-limit $n2 $n3 50

tcp0 [new Agent/TCP]
attach-agent $n0 $tcpO
pO0 set class 1

ftp0 [new Application/FTP]
p0 attach-agent S$tcp0

sink [new Agent/TCPSink]
attach-agent Sn3 $sink
connect S$tcpl0 S$sink

udpO [new Agent/UDP]
attach-agent Snl $udpO
p0 set class 2

DEPT

. OF ECE, SJCIT 3

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

set

cbr0 [new Application/Traffic/CBR]

Scbr0 attach-agent Sudp0
$cbr0 set packetSize 1000
$cbr0 set interval 0.005

set
Sns
Sns

Sns
Sns
Sns
Sns

Sns
Sns

null0 [new Agent/Null]
attach-agent $n3 SnullO
connect $udp0 S$SnullO0

at 0.1 "$cbr0 start"
at 1.0 "$ftp0 start”
at 4.0 "$ftp0 stop"
at 4.5 "Scbr0 stop"

at 5.0 "finish"
run

Steps for execution:

>

Open gedit editor and type program. Program name should have the extension * .tcl

[root@localhost ~]# gedit lab2.tcl
Save the program and quit.

Run the simulation program

[root@localhost~]# ns lab2.tcl
Here “ns” indicates network simulator. We get the topology shown in the network
animator. Now press the play button in the simulation window and the simulation will
begins.
To calculate the number of packets sent by TCP. Execute the following command.

[root@localhost~]#grep r lab2.tr | grep “tcp” -C
To calculate the number of packets sent by UDP. Execute the following command.

[root@localhost~]#grep ~r lab2.tr | grep “cbr” —C

DEPT. OF ECE, SJCIT 4

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

3. Implement Ethernet LAN using n (6-10) nodes. Compare the
throughput by changing the error rate and data rate.

set ns [new Simulator]
set trf [open lab3.tr w]
Sns trace-all S$trf

set naf [open lab3.nam w]
Sns namtrace-all S$naf

proc finish { } {
global nf ns tf
exec nam lab3.nam &
close $naf

close Strf

exit O

}

set n0 [3Sns node]
set nl [Sns node]
set n2 [3Sns node]
set n3 [Sns node]
set n4 [Sns node]
set nb5 [3Sns node]
set n6 [Sns node]

Snl label "Source"
Sn2 label "Error Node"
Sn5 label "Destination"

Sns make-lan "$n0 S$nl $n2 $n3" 10Mb 10ms LL Queue/DropTail
Mac/802 3

Sns make-lan "$n4 S$Sn5 $n6" 10Mb 10ms LL Queue/DropTail
Mac/802 3

Sns duplex-link $n2 $n6 30Mb 100ms DropTail

set udpO [new Agent/UDP]

Sns attach-agent $nl $udp0

set cbr0 [new Application/Traffic/CBR]
Scbr0 attach-agent Sudp0

set null5 [new Agent/Null]

$ns attach-agent $n5 Snullb

$ns connect $udpl0 S$nullb

$cbr0 set packetSize 100
$cbr0 set interval 0.001
$udp0 set class_ 1

set err [new ErrorModel]
Sns lossmodel Serr $n2 $nb6

DEPT. OF ECE, SJCIT 5

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

Serr set rate_ 0.7 #vary error rate 0.1, 0.4, 0.5 and 0.7

Sns at 6.0 "finish"
Sns at 0.1 "Scbr0 start"
Sns run

Steps for execution:

>

>

Open gedit editor and type program. Program name should have the extension “ .tcl

[root@localhost ~]# gedit lab3.tcl
Save the program and quit.
Run the simulation program
[root@localhost~]# ns lab3.tcl
Here “ns” indicates network simulator. We get the topology shown in the network
animator. Now press the play button in the simulation window and the simulation will
begins.
To calculate the throughput. Execute the following command.
For calculating number of received packets
[root@localhost~J#grep ~r lab3.tr | grep “2 6” | awk “{s+=36}END{print s}’
For calculating total time
[root@localhost~]J#grep r lab3.tr | grep “2 6” | awk ‘{s+=$2}END{print s}’

Throughput = (Packet received/ Total Time) (bps)

Write the value of throughput in observation sheet. Repeat the above step by changing
the error rate to the following line of the program.

$err setrate_ 0.7 #vary error rate 0.1, 0.4, 0.5and 0.7
SI. | Error rate | Throughput
No.
1. 0.1
2. 0.4
3. 0.5
4 0.7

Plot a graph with x- axis with Error rate and y-axis with Throughput.

DEPT. OF ECE, SJCIT 6

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

4. Implement Ethernet LAN using n nodes and assign multiple
traffic to the nodes and obtain congestion window for
different sources/ destinations.

set ns [new Simulator]
set £ [open labd.tr w]
Sns trace-all S$f

set nf [open lab4.nam w]
Sns namtrace-all $nf

proc finish {} {

global ns f nf outFilel outFile2

Sns flush-trace

close Sf

close $nf

exec nam lab4.nam &

exec xgraph Congestionl.xg Congestion2.xg -geometry
400x400 &

exit O

}

set n0 [3ns node]
set nl [Sns node]
set n2 [3Sns node]
set n3 [3Sns node]
set n4 [Sns node]
set nb5 [3Sns node]

$n0 label "Srcl"
$n4 label "Dstl"
Snl label "Src2"
$n5 label "Dst2"

Sns make-lan "3$n0 $nl $n2 $Sn3 $n4 $nb5 " 10Mb 30ms LL
Queue/DropTail Mac/802 3

set tcpl [new Agent/TCP]

$ns attach-agent $n0 Stcpl
set ftpl [new Application/FTP]
Sftpl attach-agent Stcpl

set sinkl [new Agent/TCPSink]
Sns attach-agent Sn4 $sinkl
sftpl set maxPkts 1000

Sns connect $tcpl $sinkl

set tcp2 [new Agent/TCP/Reno]
Sns attach-agent $nl S$Stcp?2
set ftp2 [new Application/FTP]
Sftp2 attach-agent S$tcp2

DEPT. OF ECE, SJCIT 7

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

set sink2 [new Agent/TCPSink]
$Sns attach-agent $n5 $sink?2
$ftp2 set maxPkts 1000

$ns connect S$tcp2 $sink2

set outFilel [open Congestionl.xg w]
set outFile2 [open Congestion2.xg w]

proc findWindowSize {tcpSource outFile} {
global ns
set now [$ns now]
set cWindSize [StcpSource set cwnd]
puts SoutFile "$now S$ScWindSize"

$ns at [expr S$now + 0.1] "findWindowSize S$tcpSource
SoutFile"
}
$ns at 0.0 "findWindowSize S$tcpl SoutFilel"
Sns at 0.1 "findWindowSize S$tcp2 SoutFilel2"
Sns at 0.3 "$ftpl start"
Sns at 0.5 "$ftp2 start"

Sns at 50.0 "Sftpl stop"
Sns at 50.0 "$ftp2 stop"
Sns at 50.0 "finish"

Sns run

Steps for execution:

» Open gedit editor and type program. Program name should have the extension “ .tcl

i3]

[root@localhost ~]# gedit lab4.tcl
» Save the program and quit.
» Run the simulation program
[root@localhost~]# ns lab4.tcl
» Here “ns” indicates network simulator. We get the topology shown in the network
animator. Now press the play button in the simulation window and the simulation will
begins.
» The xgraph automatically calculates and plot the two graph of Congestion window
with TCP1 and TCP2.

DEPT. OF ECE, SJCIT 8

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

5. Implement ESS with transmission nodes in Wireless LAN and
obtain the performance parameters.

set ns [new Simulator]

set tf [open labb5.tr w]

Sns trace-all stf

set topo [new Topography]

$topo load flatgrid 1300 1300

set nf [open lab5.nam w]

Sns namtrace-all-wireless $nf 1300 1300

$ns node-config -adhocRouting DSDV \
-11Type LL \
-macType Mac/802 11 \
-1fgType Queue/DropTail/PriQueue)
-channelType Channel/WirelessChannel \
-propType Propagation/TwoRayGround \
-antType Antenna/OmniAntenna \
-ifgLen 50 \
-phyType Phy/WirelessPhy \
-topoInstance Stopo \
-agentTrace ON \
-routerTrace ON

create—-god 3

set n0 [3Sns node]
set nl [$ns node]
set n2 [3Sns node]
$n0 label "ESS"
Snl label "mobl"
$n2 label "mob2"
$n0 set X 10

$n0 set Y 600

$n0 set Z_ 0

$nl set X 80

$nl set Y 600

$nl set Z_ 0

$n2 set X 1200

$n2 set Y 600

Sn2 set 2 0

Sns at "Sn0 setdest 10 600 15"

0.1
Sns at 0.1 "$nl setdest 80 600 25"
Sns at 0.1 "$n2 setdest 1200 600 25"

set tcp0 [new Agent/TCP]

Sns attach-agent $n0 Stcp0
set ftpO0 [new Application/FTP]
Sftp0 attach-agent S$tcp0

set sinkl [new Agent/TCPSink]
Sns attach-agent Snl $sinkl
$ns connect $tcpl0 S$sinkl

DEPT. OF ECE, SJCIT 9

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

set tcpl [new Agent/TCP]

$Sns attach-agent $n0 Stcpl
set ftpl [new Application/FTP]
Sftpl attach-agent Stcpl

set sink2 [new Agent/TCPSink]
Sns attach-agent $n2 $sink?2
$ns connect S$tcpl $sink2

Sns at 2 "$ftpl0 start"

$Sns at 15 "$ftpl start"

Sns at 3 "S$nl setdest 1000 600 250"
Sns at 3 "Sn2 setdest 80 600 250"

proc finish { } {
global ns nf tf
Sns flush-trace
exec nam labb.nam &
close Stf
exit O

}

Sns at 20 "finish"

Sns run

Steps for execution:

» Open gedit editor and type program. Program name should have the extension * .tcl

[root@localhost ~]# gedit lab5.tcl
» Save the program and quit.
» Run the simulation program
[root@localhost~]# ns lab5.tcl
» Here “ns” indicates network simulator. We get the topology shown in the network
animator. Now press the play button in the simulation window and the simulation will
begins.
» To calculate the throughput. Execute the following command.
For calculating number of received packets
[root@localhost~]#grep ~r lab5.tr | grep “AGT” | grep “tcp” | awk
‘{s+=88}END{print s}’
For calculating total time
[root@localhost~J#grep r lab5.tr | grep “AGT” | grep “tcp” | awk
‘{s+=82}END{print s}’

Throughput = (Packet received/ Total Time) (bps)

DEPT. OF ECE, SJCIT 10

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

6. Implementation of Link state routing algorithm.
set ns [new Simulator]
$Sns rtproto LS

set nf [open lab6.nam w]
Sns namtrace-all $nf

proc finish {} {
global ns nf
Sns flush-trace
close $nf
exec nam lab6.nam &
exit O

}

for {set i 0} {$1 < 7} {incr i} {
set n($i) [S$ns node]

}

for {set i 0} {S$1i < 7} {incr i} {

Sns duplex-link S$n($i) S$n([expr ($i+1)%7]1) 1Mb 10ms
DropTail
}

set udpO [new Agent/UDP]
Sns attach-agent $n(0) SudpO

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500

$cbr0 set interval 0.005

Scbr0 attach-agent Sudp0

set null0 [new Agent/Null]
$ns attach-agent $n(3) SnullO

$Sns connect $udpl0 S$null0

Sns at 0.5 "S$cbr0 start"

Sns rtmodel-at 1.0 down $n(l) S$n(2)
$Sns rtmodel-at 2.0 up $n(l) S$n(2)
$ns at 4.5 "Scbr0 stop"

Sns at 5.0 "finish"

Sns run

DEPT. OF ECE, SJCIT 11

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

Steps for execution:

» Open gedit editor and type program. Program name should have the extension * .tcl

2

[root@localhost ~]# gedit lab6.tcl
» Save the program and quit.
» Run the simulation program
[root@localhost~]# ns labé.tcl
> Here “ns” indicates network simulator. We get the topology shown in the network
animator. Now press the play button in the simulation window and the simulation will
begins.
> Explain link state routing algorithm using animation. How link state break and
rerouting take place.

DEPT. OF ECE, SJCIT 12

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

PART-B: Implement in C/C++

1. Write a program for a HLDC frame to perform the following.

1(i). Bit stuffing: Bit stuffing is a process of inserting an
extra bit as 0, once the frame sequence encountered 5
consecutive 1's.

Program:

#include<stdio.h>

#include<conio.h>

#include<string.h>

#define max 1000

void main ()

{

char

in[max]={'\0’},out[max]={ \0"},des[max]={ \0"},flag[9]=
”01111110";

int inlen,i, ,3j, k, outlen, len, count=0;

clrscr ()

printf (“Enter the data to be bit stuffed:\n”);
gets (in) ;

inlen = strlen(in);

strcpy (out, flag);
for (i=0, j=8; i<inlen; i++)
{
if(inf[i] = ="1")
count++;

else
count=0;

out[j++] = in[i];

if (count =5)

{
out [J++1="0";
count=0;
}
}
out[j] = "\0’";
strcat (out, flaqg);
printf (“"The bit stuffed frame is:\n%s”,out);
getch();
}

DEPT. OF ECE, SJCIT 13

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

1(ii) . Character stuffing : Character Stuffing is process in
which DLESTX and DLEETX are used to denote start and end of
character data with some constraints imposed on repetition of
characters.

Program:

#include<stdio.h>
#include<conio.h>
#include<string.h>
void main ()

{

char in[100]={*\0"},
out[100]1={*\0"}, f1[8]="DLE STX”;
char f2[8]="DLE ETX”, des[100];

int i, Jj, inlen, outlen, k;

clrscr();

printf (“Enter the data to be character stuffed\n”);
gets (in);

printf (“"The input data is :%s\n”, in);

inlen = strlen(in);

printf (“The data length is :%d\n”, inlen);
(

strcpy (out, £1) ;

for (i=0,j=7; i<inlen; i++)
{
if(in[i] = ='D’ && in[i+1l] = ="L’ && 1in[i14+2] = ="E’)

{
strcat (out, ”"DLEDLE") ;

i = 1+2;
J o= J+5;
}
out [j++] = in[i];

}

out[Jj]="\0";
strcat (out, £2) ;

printf (“The character stuffed
data is :%s\n”, out); getch(
);

}

DEPT. OF ECE, SJCIT 14

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

2. Write a program for distance vector algorithm to £find
suitable path for transmission.

Distance vector routing algorithms operate by having each
router maintain a table (i.e., vector) giving the best known
distance to each destination and which 1line to get there.
These tables are updated by exchanging information with the
neighbours.

Program:

#include<stdio.h>
struct node

{

unsigned dist[20];
unsigned from[20];
yre[107];

void main ()

{

int costmat([20][20],source,desti;

int nodes, i, j, k,count=0;

printf ("\nEnter the number of nodes : ");
scanf ("%d", &nodes) ; //Enter the nodes
printf ("\nEnter the cost matrix :\n");
for (1=0;1i<nodes; i++)

for (3j=0; j<nodes; j++)

{

scanf ("%d", &costmat[i] [7])
costmat[i][1i]=0;
rt[i].dist[jl=costmat[i] []];
rt[i].from[j]=7];

}

for (1=0; i<nodes; i++)

{

printf ("\n\n For router %d\n",i);

for (j=0; j<nodes; j++)

printf ("\t\nnode %d via %d Distance
d",j,rt[i].from[j],rt[i].dist[]])

}

do

{

count=0;

for (1i=0;i<nodes;i++)

for (j=0; j<nodes; j++)

if(i!'=7)

for (k=0; k<nodes; k++)
if(rt[i].dist[jl>rt([i].dist[k]+rt[k].dist[]])
{
rt[i].dist[jl=rt[i].dist[k]+rt[k].dist[]];
rt[i].from[j]=rt[i].from[k];

DEPT. OF ECE, SJCIT 15

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6
R EGEGNSYSN S — —— — i,
count++;

}

}while (count!=0) ;

for (1=0;i<nodes;i++)

{

printf ("\n\n For router %d\n",i+1);

for (3j=0; j<nodes; j++)

printf ("\t\nnode%d via %d Distance
sd",j+1,rt[i].from[j]+1,rt[i].dist[]]);

}
printf ("\n\n");
}

DEPT. OF ECE, SJCIT 16

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

3. Implement Dijkstra’s algorithm to compute the shortest
routing path.

Dijkstra algorithm is also called single source shortest path

algorithm. The algorithm maintains a 1list visited]|] of
vertices, whose shortest distance from the source is
calculated.

Program:

#include<stdio.h>
#include<conio.h>
#define INFINITY 99
#define MAX 10
#define startnode O
void dijkstra(int cost[MAX] [MAX],int n);
int main ()
{
int cost[MAX] [MAX],i,]j,n,u;
printf ("Enter no. of vertices:");
scanf ("%d", &n) ;
printf ("\nEnter the cost matrix:\n");
for (i=0;1i<n;i++)
for (3=0; j<n; j++)
scanf ("%d", &cost[i]1[J]);
dijkstra (cost,n);
return 0;

}

void dijkstra(int cost[MAX] [MAX],int n)
{
int distance[MAX],pred[MAX];
int visited[MAX],count, mindistance, nextnode, i, 7j;

//initialize pred[],distance[] and visited[]

for (i=0;i<n; i++)

{
distance[i]=cost[startnode] [i];
pred[i]=startnode;
visited[i]1=0;

}

0;

distance[startnode]=

visited[startnode]
count=1;
while (count<n-1)

{
mindistance=INFINITY;

DEPT. OF ECE, SJCIT 17

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

//nextnode gives the node at minimum distance
for (i=0;i<n; i++)
if (distance[i]<mindistanceé&&!visited[i])
{
mindistance=distance[i];
nextnode=i;
}
//check if a better path exists through nextnode
visited[nextnode]=1;
for (i=0;i<n;i++)
if (!visited[1])
if (mindistance+cost[nextnode] [i]<distance[i])
{
distance[i]=mindistance+cost[nextnode] [i];
pred[i]=nextnode;
}
count++;
}
//print the path and distance of each node
for (i=0;1i<n;i++)
if (i!=startnode)
{
printf ("\nDistance of node%d=%d",i,distancel[i]);
printf ("\nPath=%d", i) ;
J=1i;
do
{
j=pred[]j];
printf (" <-%d ",7J);
}while (j!=startnode);

DEPT. OF ECE, SJCIT 18

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

4. For the given data, use CRC-CCITT polynomial to obtain CRC
code. Verify the program for the cases
a. Without error
b. With error

#include <stdio.h>
#include<conio.h>
#include<string.h>

unsigned int xor2div(char *i, char *a, int mode)
{

unsigned int j, k;

char g[81]={“100011"};

strcpy(a, 1i);

if (mode)

strcat (a,”00000") ;

for (j=0;j<strlen(i);j++)

if(*(a+j) = ="1")

for (k=0;k<strlen(qg); k++)

{
if (((*(atj+k = ="0") && (gl[k] = ="0")) || ((*(atj+tk =
="1") && (g[k] = ="1")))

*(at+tj+tk)="0";
else
*(a+j+k)="1";
}
for (j=0;j<strlen(a);j++)
{
if(afjl=="1")
return(1l);

}

return (0) ;

}

void main ()

{

char 1i[81]={*\0"}, a[81]= {*\0"}, r[81l]= {*\0'"};
clrscr();
printf (“\n Enter the data in binary: \t”);

scanf (“%s”, &1)

xor2div(i,a,1l);

printf (™ \n CRC-CCITT code is : \n %s%s “, I,
atstrlen(i));

printf (“\n Enter the received code in binary: \n);
scanf (“%s”, &r);

if (strlen(a) = = strlen(r))

{

if (!xor2div(r,a,0))

DEPT. OF ECE, SJCIT 19

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

printf (™ \n The received data is error free ”);

else
printf (“\n The received data is error ”);

}

else
printf (Y \n Wrong input, run the program with correct
input”);

getch();

}

e ———
20

DEPT. OF ECE, SJCIT

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

5. Implementation of Stop and Wait Protocol and Sliding Window
Protocol

5(a) . Stop and Wait protocol

Program:

#include <stdio.h>
#include <stdlib.h>
#define RTT 4

#define TIMEOUT 4

#define TOT FRAMES 7

enum {NO,YES} ACK;

int main ()

{

int wait time,i=1;

ACK=YES;

for(;i<=TOT_FRAMES;)

{

if (ACK==YES && 1i!=1)

{

printf ("\nSENDER: ACK for Frame %d Received.\n",i-1);
}

printf ("\nSENDER: Frame %d sent, Waiting

for ACK...\n",1); ACK=NO;

wait time= rand() % 4+1;

if (wait_time==TIMEOUT)

{

printf ("SENDER: ACK not received for Frame
%d=>TIMEOUT Resending Frame...",1i);

}

else

{

sleep (RTT) ;

printf ("\nRECEIVER: Frame %d received, ACK sent\n",i);
erintf ("--------------------------------—-\—————————- ")
ACK=YES;

1++;

}

}

return 0;

}

-]
DEPT. OF ECE, SJCIT 21

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

5(b). Sliding window protocol program

Program:

#include <stdio.h>
#include <stdlib.h>
#define RTT 5

int main ()

{

int window size,i,f, frames[50];

printf ("Enter window size: ");
scanf ("%d", &window size);
printf ("\nEnter number of frames to transmit: ");
scanf ("%d", &f) ;
printf ("\nEnter %d frames: ",f);

for(i=1;i<=f;i++)
scanf ("%d", &frames[i]) ;
printf ("\nAfter sending %d frames at each stage
sender waits for ACK ",window size);
printf ("\nSending frames in the following
manner....\n\n");
for(i=1;i<=f;i++)
{
1f (i%window size!=0)
{
printf (" %d", frames[i]);
}
else
{
printf (" %d\n", frames([i]);
printf ("SENDER: waiting for ACK...\n\n");
sleep (RTT/2) ;
printf ("RECEIVER: Frames Received, ACK Sent\n");
printf("--——————-"-"-"""" \n") ;
sleep (RTT/2) ;
printf ("SENDER:ACK received, sending next frames\n");
}
}
1f (f3window size!=0)
{
printf ("\nSENDER: waiting for ACK...\n");
sleep (RTT/2) ;
printf ("\nRECEIVER:Frames Received, ACK Sent\n");
printf ("---------——-"-"-1H-"-"-"-"---"—------"--"""-""""" "
\n");
sleep (RTT/2) ;
printf ("SENDER:ACK received.");
}

return O;

DEPT. OF ECE, SJCIT 22

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

6. Write a program for congestion control using leaky bucket
algorithm

In Leaky bucket, each host is connected to the network by an
interface containing a 1leaky bucket, that is, a finite
internal queue. If a packet arrives at the queue when it is
full, the packet is discarded.

Program:

#include<stdio.h>
#define bucketsize 1000
#define n 5
void bucketoutput (int *bucket,int op)
{
if (*bucket > 0 && *bucket > op)
{
*bucket= *bucket-op;
printf ("\n%d-outputed remaining is %d", op, *bucket) ;
}
else if (*bucket > 0)
{
printf ("\nRemaining data output = %d", *bucket) ;
*bucket=0;
}
}
int main ()
{
int op,newpack,oldpack=0,wt, i, j,bucket=0;
printf ("enter output rate");
scanf ("%d", &op) ;
for (i=1;i<=n;i++)
{
newpack=rand () %$500;
printf ("\n\n new packet size = %d",newpack);
newpack=oldpack+newpack;
wt=rand () %5;
if (newpack<bucketsize)
bucket=new
ack;
else
{
printf ("\n%d = the newpacket and old pack is
greater than bucketsize reject",newpack);
bucket=oldpack;
}
printf ("\nThe data in bucket = %d",bucket);
printf ("\n the next packet will arrive after = %d
sec",wt);

for (3=0; j<wt; j++)

DEPT. OF ECE, SJCIT 23

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6
——————]

{
bucketoutput (&bucket, op) ;

sleep(l);

}
oldpack=bucket;

}

while (bucket>0)
bucketoutput (&bucket, op) ;
return 0;

-]
DEPT. OF ECE, SJCIT 24

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

NETWORK SIMULATOR 2 (NS2)
(https://www.tutorialsweb.com/ns2)

1. What is NS2

NS2 stands for Network Simulator Version 2. It 1is an open-
source event-driven simulator designed specifically for
research in computer communication networks.

2. Features of NS2
e Tt is a discrete event simulator for networking research.
e Tt provides substantial support to simulate Dbunch of
protocols like TCP, FTP, UDP, https and DSR.
e Tt simulates wired and wireless network.
e It is primarily Unix based.
e Uses TCL as its scripting language.
e Otcl: Object oriented support
e Tclcl: C++ and otcl linkage
e Discrete event scheduler

3. Basic Architecture

NS2 consists of two key languages: C++ and Object-oriented
Tool Command Language (OTcl). While the C++ defines the
internal mechanism (i.e., a backend) of the simulation
objects, the OTcl sets wup simulation by assembling and
configuring the objects as well as scheduling discrete events.
The C++ and the OTcl are linked together using TclCL

Tal / lmulatloh (Simulatio > Simulation
is

Simulation Ob'ects Objec Trace
Script \ \ File
— - OTC] p—
%—-» NS2 Shell Executable Command (ns) |—» ‘-?_\
- -
l____}::i_l i o
1 NAM . Xgraph

Basic architecture of NS.

4 Why two language? (TCL and C++)

NS2 uses OTcl to create and configure a network, and uses C++
to run simulation. All C++ codes need to be compiled and
linked to create an executable file.

DEPT. OF ECE, SJCIT 25

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

DEV C++ EDITOR

Step 1: Opening DEV C++
Double click on the Dev C++ icon available on the desktop to
open the editor.

DEV

gt

Embarcadero
Dev-C++

Step 2: Coding new c/c++ Program
Click on the ™“New Document” option on the welcome screen for
coding new program.

2% Embarcadero Dev-C++ 6.3
File Edit Search View Project Execute Tools
TDM-GCC 9.2.0 64-bit Release
m

c I I New Document Open Document

Change Theme Change Font Change Language
WELCOME

Hotkeys

ctr
Zoom Ctr+ Scrol
Run F10
Compile F9

Clear Crr+w

Compiler esources Con og Debug Find Results

' Type here to search i 28 29°C Lightrain A~ @@ &3 d)) ENG

DEPT. OF ECE, SJCIT 26

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

Step 3: Code the C program

£5¢ Untitled1 - Embarcadero Dev-C++ 6.3
File Edit Search View Project Execute Tools
9.2.0 64-bit Rel
(globals)
BB rlunitedt X mepgmiad
1

int main()

{
char in[max]={'\@'},out[max]={'\@"'},des[max]={"'\@"'},flag[2]="061111110";
int inlen,i,j, k, outlen, len, count=8;
J//clrscr()
printf("Enter the data to be bit stuffed:\n");
gets(in);
inlen = strlen(in);
strcpy(out, flag);
for(i=e, j=8; i<inlen; i++)
{
if(in[i] =='1")
count++;

woo~NOUVEAEWN

out[j++] = in[i];
Debug Finc
35 Length:

%41 PM
(]

290¢ X 3 ENG
29°C Light rain om 3 Q) ENG e

Untitledl - Embarcadero Dev-C++ 6.3
P Execute A Window Help
Open... Ctrl+0

Ctrl+S

Shift+Ctrl+5

Ctrl+W

Shift+Crl+W
t[max]={'\@'},des[max]={"'\@"'},flag[2]="01111110";
en, len, count=9;
»

' to be bit stuffed:\n");

Ctrl+P

Exit Embarcadero Dev-C+ + Alt+F4
15
19
20
21
22

Debug Find R

35 Length:

%42 PM
03-Oct-21 D

9C Light rain ~ ~ % &5 » ENG

DEPT. OF ECE, SJCIT 27

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

Step 5: Provide the Name of program like “mspgml” and click
save.

Edit Search View Project Execute Too
TDM-GCC 9.2.0 64-hit Release !
(globals)

BB tunited -

int main()

{h in 1={" Desktop
char in[max]={

int inlen,i,j, |
//clrser() Lbraries
printf("Enter t _s‘
EE‘ts(in); This PC
inlen = strlen(.
strcpy(out, fla §
for(i=e, j=8; i MNetwork

s

1
if(in[i] =="1")
count++;

else
count=06;

out[j++]

%45 PM

29°C Lightrain ~ S® &3 dn ENG i L]

Step 6: Press F9 (or) icon . to compile the errors.

Step 7: Eliminating Errors

If any Errors are present it will 1listed under Compiler
option. Once program is free from errors below message will be
displayed.

- Errors: O
- Warnings: O

Step 8: Press F10 (or) . to Run the program.

DEPT. OF ECE, SJCIT 28

COMPUTER NETWORKS & PROTOCOLS - BEC702 VER-0.6

QUESTION BANK

PART-A

A.l. | Using NS2,Implement a point to point network with four
nodes and duplex links between them. Analyze the network
performance by setting the queue size and varying the
bandwidth.

A.2. |Using NS2,Implement a four node point to point network
with links n0-n2, nl-n2 and n2-n3. Apply TCP agent
between n0-n3 and UDP between nl-n3. Apply relevant
applications over TCP and UDP agents changing the
parameter and determine the number of packets sent by
TCP/UDP.

A.3. |Using NS2,Implement Ethernet LAN using n (6-10) nodes.
Compare the throughput by changing the error rate and
data rate

A.4. | Using NS2,Implement Ethernet LAN using n nodes and assign
multiple traffic to the nodes and obtain congestion
window for different sources/ destinations.

A.5. |Using NS2,Implement ESS with transmission nodes in
Wireless LAN and obtain the performance parameters.

A.6. | Using NS2,Implementation of Link state routing algorithm.

PART-B

B.1l. |Write a C/C++ program for a HLDC frame to perform the
following
(1)Bit stuffing (ii) Character stuffing

B.2. |Write a C/C++ program for distance vector algorithm to
find suitable path for transmission.

B.3. | Implement Dijkstra’s algorithm to compute the shortest
routing path using C/C++

B.4. | For the given data, use CRC-CCITT polynomial to obtain

CRC code. Verify the C/C++ program for the cases
a.Without error

b. With error

B.5. | Implement using C/C++ for Stop and Wait Protocol and
Sliding Window Protocol

B.6. |[Write a C/C++ program for congestion control using leaky
bucket algorithm

DEPT. OF ECE, SJCIT 29

